

**DATA SHEET** 

# SKY73049-350LF: 200 to 5000 MHz Single Downconversion Mixer

# **Applications**

- 2G, 2.5G, 3G, and 4G base station transceivers: GSM, EDGE, CDMA, WCDMA, LTE, WiMAX
- · General purpose RF systems
- · Wireless infrastructure

#### **Features**

- RF frequency operation range: 200 to 5000 MHz
- High-side or low-side injection
- Integrated LO driver
- ullet Wideband integrated 50  $\Omega$  matched LO and RF ports
- +3.3 V or +5 V operation
- Small, QFN (16-pin, 3 x 3 mm) package (MSL1, 260 °C per JEDEC J-STD-020)



Skyworks Pb-free products are compliant with all applicable legislation. For additional information, refer to *Skyworks Definition of Lead (Pb)-Free*, document number \$Q04-0073.

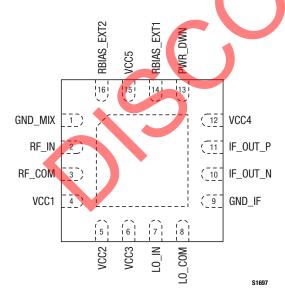



Figure 2. SKY73049-350LF Pinout – 16-Pin QFN (Top View)

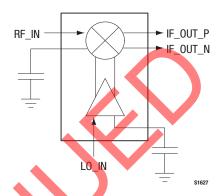



Figure 1. SKY73049-350LF Block Diagram

# Description

The SKY73049-350LF is a fully integrated, wideband single mixer that includes Local Oscillator (LO) drivers, an RF input stage, and a high linearity mixer core. The SKY73049-350LF features a power gain of 7 dB, a 3<sup>rd</sup> Order Input Intercept Point (IIP3) of +26 dBm, and a Noise Figure (NF) of 15 dB over a wide frequency range, which makes the device an ideal solution for multi-band 2G, 2.5G, 3G, and 4G base station transceivers.

The SKY73049-350LF is manufactured using a robust SiGe BiCMOS process, and has been designed for optimum long-term reliability. The device is provided in a compact, 3 x 3 mm, 16-pin Quad Flat No-Lead (QFN) package. A functional block diagram is shown in Figure 1. The pin configuration and package are shown in Figure 2. Signal pin assignments and functional pin descriptions are provided in Table 1.

Table 1. SKY73049-350LF Signal Descriptions

| Pin # | Name    | Description                           | Pin# | Name       | Description                         |  |
|-------|---------|---------------------------------------|------|------------|-------------------------------------|--|
| 1     | GND_MIX | Ground for mixer                      | 9    | GND_IF     | Ground for IF                       |  |
| 2     | RF_IN   | RF input for mixer                    | 10   | IF_OUT_N   | Negative IF output                  |  |
| 3     | RF_COM  | RF common (AC ground) for mixer input | 11   | IF_OUT_P   | Positive IF output                  |  |
| 4     | VCC1    | Supply for mixer                      | 12   | VCC4       | Supply for mixer                    |  |
| 5     | VCC2    | Supply for mixer                      | 13   | PWR_DWN    | Power down control                  |  |
| 6     | VCC3    | Supply for mixer                      | 14   | RBIAS_EXT1 | External bias resistor for mixer    |  |
| 7     | LO_IN   | LO input                              | 15   | VCC5       | Supply for mixer                    |  |
| 8     | LO_COM  | LO common (AC ground) for LO input    | 16   | RBIAS_EXT2 | External bias resistor for LO chain |  |

Note: Exposed pad must be grounded.

# **Technical Description**

The SKY73049-350LF is a high dynamic range single mixer, optimized for base station receiver applications. The device consists of an RF input stage, a high linearity active mixer core, and an LO amplifier.

#### **RF Active Mixer**

The high linearity SKY73049-350LF is an active, double balanced mixer that provides good noise performance and an excellent IIP3. Additionally, the balanced nature of the mixer provides for high port-to-port isolation. A wideband match to 50  $\Omega$  is provided internally, which eliminates the need for any external matching components except for a coupling capacitor.

The IF outputs are designed for 200  $\Omega$  differential impedance and require off-chip matching.

#### **LO Buffers**

The LO buffers allow the input power of the SKY73049-350LF to be in the range of -10 to 0 dBm. The LO input frequency range is optimized for 200 to 5000 MHz, and could drive the mixer with both low-side and high-side LO injection. The single-ended LO port is internally matched to  $50~\Omega$  without the need for any external components.

#### **IF Output**

The SKY74039 has differential, high impedance open collector outputs (IF\_OUT\_N and IF\_OUT\_P) that need to be pulled up to supply voltage through RF chokes or through the center tap of a balun. The IF load for the mixer is provided externally. This flexible configuration enables the user to apply any external load, making IF\_OUT\_N and IF\_OUT\_P "broadband" outputs. The nominal value of this load is 200  $\Omega$  differential.

# **Electrical and Mechanical Specifications**

The absolute maximum ratings of the SKY73049-350LF are provided in Table 2. The recommended operating conditions are specified in Table 3, and electrical specifications are provided in Tables 4 (+5 V operation) and 5 (+3.3 V operation).

# **Evaluation Board Description**

The SKY73049-350LF Evaluation Board is used to test the performance of the SKY73049-350LF downconversion mixer. An Evaluation Board schematic diagram is provided in Figure 3. An assembly drawing for the Evaluation Board is shown in Figure 4 and the layer detail is provided in Figure 5.

### **Package Dimensions**

Typical part markings are shown in Figure 6. Package dimensions for the 16-pin QFN are shown in Figure 7, and tape and reel dimensions are provided in Figure 8.

#### **Package and Handling Information**

Instructions on the shipping container label regarding exposure to moisture after the container seal is broken must be followed. Otherwise, problems related to moisture absorption may occur when the part is subjected to high temperature during solder assembly.

THE SKY73049-350LF is rated to Moisture Sensitivity Level 1 (MSL1) at 260 °C. It can be used for lead or lead-free soldering.

Care must be taken when attaching this product, whether it is done manually or in a production solder reflow environment. Production quantities of this product are shipped in a standard tape and reel format.

**Table 2. SKY73049-350LF Absolute Maximum Ratings** 

| Parameter                                 | Symbol | Minimum | Typical | Maximum | Units |
|-------------------------------------------|--------|---------|---------|---------|-------|
| Supply voltage                            | Vcc    | 3.0     | 5.0     | 5.5     | V     |
| Supply current                            | lcc    |         |         | 200     | mA    |
| RF input power                            | Pin    |         |         | +10     | dBm   |
| LO input power                            | PLO    |         |         | +10     | dBm   |
| Operating temperature                     | TCASE  | -40     |         | +85     | °C    |
| Junction temperature                      |        |         |         | +150    | °C    |
| Storage temperature                       | Тѕтс   | -40     |         | +125    | °C    |
| Electrostatic discharge:                  | ESD    |         |         |         |       |
| Human Body Model (HBM), Class 1B (Note 3) |        |         |         | 1000    | V     |

Note 1: Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value. Exceeding any of the limits listed here may result in permanent damage to the device.

**CAUTION**: Although this device is designed to be as robust as possible, Electrostatic Discharge (ESD) can damage this device. This device must be protected at all times from ESD. Static charges may easily produce potentials of several kilovolts on the human body or equipment, which can discharge without detection. Industry-standard ESD precautions should be used at all times.

**Table 3. SKY73049-350LF Recommended Operating Conditions** 

| Parameter                                                              | Symbol             | Minimum | Typical  | Maximum  | Units                    |
|------------------------------------------------------------------------|--------------------|---------|----------|----------|--------------------------|
| RF frequency range                                                     | frF                | 200     |          | 5000     | MHz                      |
| L0 frequency range                                                     | fLo                |         | RF ± IF  |          | MHz                      |
| IF frequency range                                                     | fir                | 50      |          | 500      | MHz                      |
| Supply voltage                                                         | Vcc                | 3.00    | 5.00     | 5.25     | V                        |
| Supply current                                                         | lcc                |         | 133      | 170      | mA                       |
| LO input power                                                         | PLO                | -10     | 0        |          | dBm                      |
| PwrDwn pin level: Mixer On Mixer Off                                   | VPWRDWN<br>VPWRDWN | Vcc –1  | 0<br>Vcc | 1        | V<br>V                   |
| PwrDwn pin current: Mixer On (current sink) Mixer Off (current source) | ipwrdwn<br>Ipwrdwn |         | 50<br>50 | 70<br>70 | μ <b>Α</b><br>μ <b>Α</b> |
| Operating temperature                                                  | TCASE              | -40     |          | +85      | °C                       |

Note 2: Nominal thermal resistance (junction to case) is 5.1 °C/W.

Note 3: Applies to RF signal lines > 100 MHz, analog and RF lines < 100 MHz, digital lines, power supply lines, and ground pins.

Table 4. SKY73049-350LF Electrical Specifications (Note 1) (Vcc = +5 V, Tcase = +25 °C, L0 = 0 dBm, High Side Injection, IF = 100 MHz, Unless Otherwise Noted)

| Parameter                                   | Symbol | Test Condition                      | Min   | Typical             | Max   | Units |
|---------------------------------------------|--------|-------------------------------------|-------|---------------------|-------|-------|
| Conversion gain                             | G      | @ 0.7 to 0.9 GHz                    | 6.4   | 7.6                 |       | dB    |
|                                             |        | @ 1.9 to 2.2 GHz                    | 5.8   | 6.6                 |       | dB    |
|                                             |        | @ 2.6 to 2.8 GHz                    | 5.4   | 6.2                 |       | dB    |
|                                             |        | @ 3.6 GHz                           | 4.5   | 5.2                 |       | dB    |
| Noise Figure (Note 2)                       | NF     | @ 0.7 to 0.9 GHz                    |       | 14.1                | 16.0  | dB    |
|                                             |        | @ 1.9 to 2.2 GHz                    |       | 15.5                | 16.9  | dB    |
|                                             |        | @ 2.6 to 2.8 GHz                    |       | 16.0                | 17.3  | dB    |
|                                             |        | @ 3.6 GHz                           |       | 17.0                | 18.6  | dB    |
| 3 <sup>rd</sup> Order Input Intercept Point | IIP3   | Tone space = 1 MHz,                 |       |                     |       |       |
|                                             |        | $P_{IN} = -15 \text{ dBm per tone}$ |       |                     |       |       |
|                                             |        | @ 0.7 to 0.9 GHz                    | +24.0 | +26.4               |       | dBm   |
|                                             |        | @ 1.9 to 2.2 GHz                    | +24.6 | +29.0               |       | dBm   |
|                                             |        | @ 2.6 to 2.8 GHz                    | +24.8 | +27.8               |       | dBm   |
|                                             |        | @ 3.6 GHz                           | +23.9 | +27.1               |       | dBm   |
| 2 <sup>nd</sup> Order Input Intercept Point | IIP2   | Tone space = 50 MHz                 |       |                     |       |       |
|                                             |        | @ 0.7 to 0.9 GHz                    | +41.3 | +57. <mark>0</mark> |       | dBm   |
|                                             |        | @ 1.9 to 2.2 GHz                    | +48.0 | +59.8               |       | dBm   |
|                                             |        | @ 2.6 to 2.8 GHz                    | +50.4 | +56.9               |       | dBm   |
|                                             |        | @ 3.6 GHz                           | +47.5 | +55.8               |       | dBm   |
| 1 dB Input Compression Point                | IP1dB  | @ 0.7 to 0.9 GHz                    | +2.9  | +5.4                |       | dBm   |
|                                             |        | @ 1.9 to 2.2 GHz                    | +4.4  | +6.5                |       | dBm   |
|                                             |        | @ 2.6 to 2.8 GHz                    | +4.9  | +6.9                |       | dBm   |
|                                             |        | @ 3.6 GHz                           | +6.3  | +7.9                |       | dBm   |
| RF to IF isolation                          |        | No filtering at IF output           |       |                     |       |       |
|                                             |        | @ 0.7 GHz                           |       | -30.0               | -27.0 | dBc   |
|                                             |        | @ 1.9 to 2.2 GHz                    |       | -28.2               | -25.2 | dBc   |
|                                             |        | @ 2.6 to 2.8 GHz                    |       | -33.9               | -30.5 | dBc   |
|                                             |        | @ 3.6 GHz (Note 3)                  |       | -26.3               | -23.0 | dBc   |
| LO leakage @ IF port                        |        | @ 0.7 to 0.9 GHz                    |       | -55.6               | -38.9 | dBc   |
|                                             |        | @ 1. <mark>9 t</mark> o 2.2 GHz     |       | -37.7               | -25.3 | dBc   |
|                                             |        | @ 2.6 to 2.8 GHz (Note 3)           |       | -37.1               | -23.9 | dBc   |
|                                             |        | @ 3.6 GHz                           |       | -34.9               | -20.2 | dBc   |
| LO leakage @ RF port                        |        | @ 0.7 to 0.9 GHz                    |       | -59.9               | -56.5 | dBc   |
|                                             |        | @ 1.9 to 2.2 GHz                    |       | -49.1               | -45.7 | dBc   |
|                                             |        | @ 2.6 to 2.8 GHz                    |       | -47.9               | -43.4 | dBc   |
|                                             |        | @ 3.6 GHz                           |       | -49.8               | -45.0 | dBc   |
| 2RF to 2LO                                  | 2x2    | PiN = -10 dBm                       |       |                     |       |       |
|                                             |        | @ 0.7 to 0.9 GHz                    |       | -75.4               | -64.2 | dBc   |
|                                             |        | @ 1.9 to 2.2 GHz                    |       | -67.1               | -59.4 | dBc   |
|                                             |        | @ 2.6 to 2.8 GHz                    |       | -61.8               | -57.6 | dBc   |
|                                             |        | @ 3.6 GHz                           |       | -66.2               | -61.6 | dBc   |
| 3RF to 3L0                                  | 3x3    | PiN = -10  dBm                      |       |                     |       |       |
|                                             |        | @ 0.7 to 0.9 GHz                    |       | -82.8               | -71.9 | dBc   |
|                                             |        | @ 1.9 to 2.2 GHz                    |       | -79.0               | -68.7 | dBc   |
|                                             |        | @ 2.6 to 2.8 GHz                    |       | -78.3               | -68.0 | dBc   |
|                                             |        | @ 3.6 GHz                           |       | -80.1               | -70.0 | dBc   |
| RF port input return loss                   | ZIN_RF | No matching                         |       | -13                 | -12   | dB    |
| LO port input return loss                   | ZIN_LO | No matching                         |       | -14                 | -12   | dB    |
|                                             | lvcc   |                                     | 1     | 133                 | 155   | mA    |

Note 1: Performance is guaranteed only under the conditions listed in this Table.

 $\textbf{Note 2} : \ \textbf{Characterized in an RF screen room}.$ 

Note 3: RF tones at IF output measured with an off-chip balun except at 0.7 to 0.9 GHz for RF to IF isolation.

Table 5. SKY73049-350LF Electrical Specifications (Note 1)  $(Vcc = +3.3 \text{ V}, Tcase = +25 ^{\circ}C, L0 = 0 \text{ dBm}, High Side Injection, IF = 100 MHz, Unless Otherwise Noted)$ 

| Parameter                                   | Symbol | Test Condition                                     | Min | Typical      | Max | Units      |
|---------------------------------------------|--------|----------------------------------------------------|-----|--------------|-----|------------|
| Conversion gain                             | G      | @ 0.7 to 0.9 GHz                                   |     | 7.4          |     | dB         |
|                                             |        | @ 1.9 to 2.2 GHz                                   |     | 6.3          |     | dB         |
|                                             |        | @ 2.6 to 2.8 GHz<br>@ 3.6 GHz                      |     | 6.0<br>5.7   |     | dB<br>dB   |
|                                             |        |                                                    |     |              |     | -          |
| Noise Figure (Note 2)                       | NF     | @ 0.7 to 0.9 GHz                                   |     | 13.0         |     | dB         |
|                                             |        | @ 1.9 to 2.2 GHz                                   |     | 14.0         |     | dB<br>dB   |
|                                             |        | @ 2.6 to 2.8 GHz<br>@ 3.6 GHz                      |     | 14.5<br>15.0 |     | dВ         |
| 3 <sup>rd</sup> Order Input Intercept Point | IIP3   |                                                    |     | 10.0         |     | 45         |
| 3 Order Input Intercept Foint               | IIFS   | Tone space = 1 MHz,<br>$P_{IN} = -15$ dBm per tone |     | •            |     |            |
|                                             |        | @ 0.7 to 0.9 GHz                                   |     | +24          |     | dBm        |
|                                             |        | @ 1.9 to 2.2 GHz                                   |     | +23          |     | dBm        |
|                                             |        | @ 2.6 to 2.8 GHz                                   |     | +23          |     | dBm        |
|                                             |        | @ 3.6 GHz                                          |     | +20          |     | dBm        |
| 2 <sup>nd</sup> Order Input Intercept Point | IIP2   | Tone space = 50 MHz                                |     |              |     |            |
|                                             |        | @ 0.7 to 0.9 GHz                                   |     | +53          |     | dBm        |
|                                             |        | @ 1.9 to 2.2 GHz                                   |     | +53          |     | dBm        |
|                                             |        | @ 2.6 to 2.8 GHz                                   |     | +54          |     | dBm        |
|                                             |        | @ 3.6 GHz                                          |     | +48          |     | dBm        |
| 1 dB Input Compression Point                | IP1dB  | @ 0.7 to 0.9 GHz                                   |     | +3.0         |     | dBm        |
|                                             |        | @ 1.9 to 2.2 GHz                                   |     | +4.5         |     | dBm        |
|                                             |        | @ 2.6 to 2.8 GHz                                   |     | +5.0         |     | dBm        |
|                                             |        | @ 3.6 GHz                                          |     | +5.0         |     | dBm        |
| RF to IF isolation                          |        | No filtering at IF output                          |     |              |     |            |
|                                             |        | @ 0.7 to 0.9 GHz                                   |     | -30          |     | dBc        |
|                                             |        | @ 1.9 to 2.2 GHz<br>@ 2.6 to 2.8 GHz               |     | −31<br>−32   |     | dBc<br>dBc |
|                                             |        | @ 3.6 GHz (Note 3)                                 |     | -32<br>-25   |     | dBc        |
| LO leakage @ IF port                        |        | @ 0.7 to 0.9 GHz                                   |     | -33          |     | dBc        |
| 20 loanage C ii port                        |        | @ 1.9 to 2.2 GHz                                   |     | <b>–35</b>   |     | dBc        |
|                                             |        | @ 2.6 to 2.8 GHz (Note 3)                          |     | -38          |     | dBc        |
|                                             |        | @ 3.6 GHz                                          |     | -31          |     | dBc        |
| LO leakage @ RF port                        |        | @ 0.7 to 0.9 GHz                                   |     | -60          |     | dBc        |
|                                             |        | @ 1.9 to 2.2 GHz                                   |     | -60          |     | dBc        |
|                                             |        | @ 2.6 to 2.8 GHz                                   |     | -45<br>45    |     | dBc        |
| 2071 010                                    |        | @ 3.6 GHz                                          |     | <b>–45</b>   |     | dBc        |
| 2RF to 2LO                                  | 2x2    | $P_{IN} = -12 \text{ dBm}$                         |     |              |     |            |
|                                             |        | @ 0.7 to 0.9 GHz                                   |     | -70<br>-70   |     | dBc        |
|                                             |        | @ 1.9 to 2.2 GHz<br>@ 2.6 to 2.8 GHz               |     | –70<br>–65   |     | dBc<br>dBc |
|                                             |        | @ 3.6 GHz                                          |     | -65<br>-69   |     | dBc        |
| 3RF to 3L0                                  | 3x3    | $P_{IN} = -12 \text{ dBm}$                         |     |              |     |            |
|                                             |        | @ 0.7 to 0.9 GHz                                   |     | -80          |     | dBc        |
|                                             |        | @ 1.9 to 2.2 GHz                                   |     | -80          |     | dBc        |
|                                             |        | @ 2.6 to 2.8 GHz                                   |     | <b>–77</b>   |     | dBc        |
|                                             |        | @ 3.6 GHz                                          |     | -80          |     | dBc        |
| RF port input return loss                   | ZIN_RF | No matching                                        |     | -13          |     | dB         |
| LO port input return loss                   | ZIN_LO | No matching                                        |     | -14          |     | dB         |
| Total supply current                        | lvcc   |                                                    |     | 122          |     | mA         |

Note 1: Performance is verified by characterization.

Note 2 : Characterized in an RF screen room

Note 3: RF tones at IF output measured with an off-chip balun except at 0.7 to 0.9 GHz for RF to IF isolation.

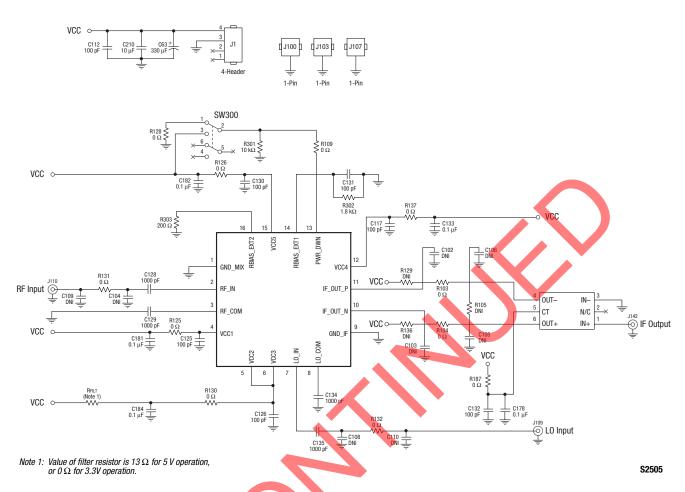



Figure 3. SKY73049-350LF Evaluation Board Typical Application Schematic

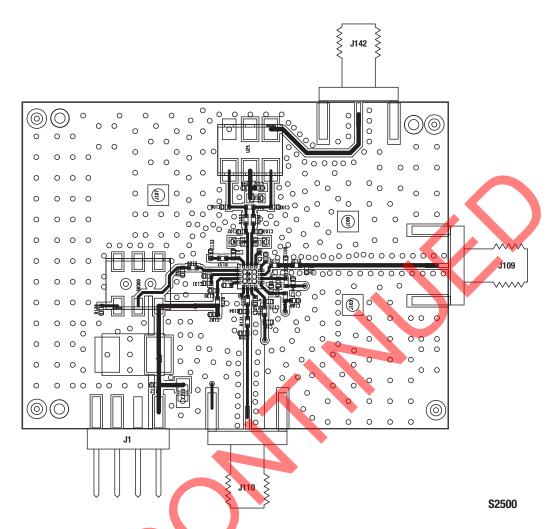



Figure 4. SKY73049-350LF Evaluation Board Assembly Drawing



Figure 5. SKY73049-350LF Evaluation Board Layer Detail

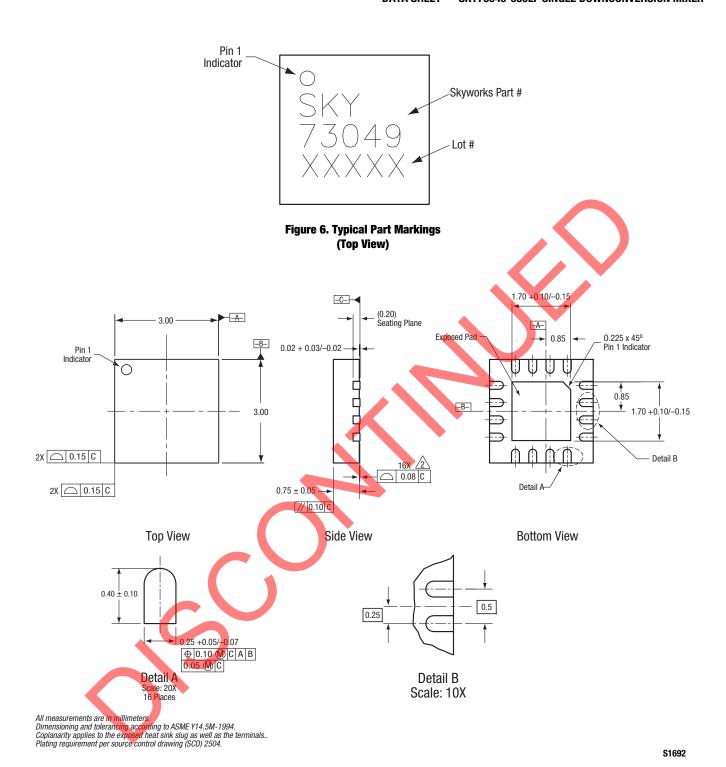



Figure 7. SKY73049-350LF 16-Pin QFN Package Dimensions

### DATA SHEET • SKY73049-350LF SINGLE DOWNCONVERSION MIXER

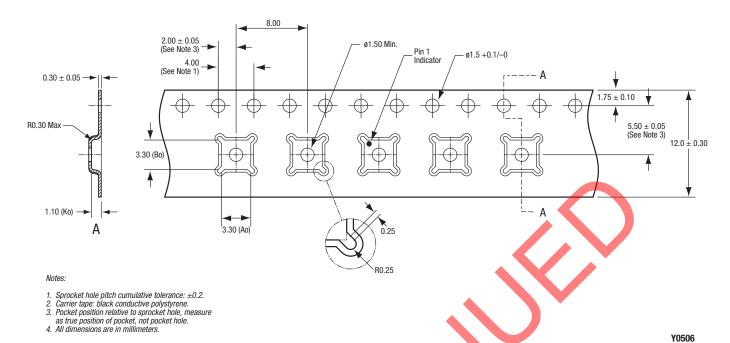



Figure 8. SKY73049-350LF Tape and Reel Dimensions

## **Ordering Information**

| Model Name                                              | Manufacturing Part Number | Evaluation Board Part Number |  |  |
|---------------------------------------------------------|---------------------------|------------------------------|--|--|
| SKY73049-350LF 200-5000 MHz single downconversion mixer | SKY73049-350LF            | TW18-D260                    |  |  |



Copyright © 2009- 2014 Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks Terms and Conditions of Sale.

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of stated published specifications or parameters.

Skyworks, the Skyworks symbol, and "Breakthrough Simplicity" are trademarks or registered trademarks of Skyworks Solutions, Inc., in the United States and other countries. Third-party brands and names are for identification purposes only, and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.