

DATA SHEET

SKY12215-478LF: 0.9 to 4.0 GHz, 125 W High-Power Silicon PIN Diode SPDT Switch

Applications

- Transmit/receive switching and failsafe switching in TD-SCDMA, WiMAX, and LTE base stations
- Transmit/receive switching in land mobile radios and military communication systems

Features

- High-power handling: 125 W CW
- Low insertion loss: 0.4 dB typical
- High antenna to receive isolation: 43 dB @ 2.6 GHz typical
- Controlled with positive power supply
- · Bias driver circuit available on request
- Small, QFN (16-pin, 4 x 4 mm) Pb-free package (MSL1, 260 °C per JEDEC J-STD-020)

Skyworks GreenTM products are compliant with all applicable legislation and are halogen-free. For additional information, refer to *Skyworks Definition of Green*TM, document number SQ04-0074.

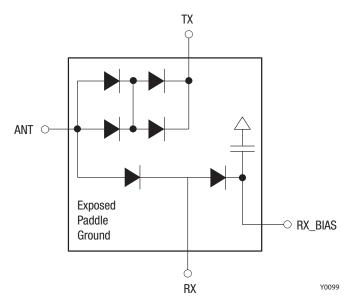


Figure 1. SKY12215-478LF Block Diagram

Description

The SKY12215-478LF is a high-power handling, single-pole, double-throw (SPDT) silicon PIN diode switch. The device operates over the 900 MHz to 4 GHz band. It features low insertion loss, excellent power handling, and superb linearity with low DC power consumption.

The SKY12215-478LF is well-suited for use as a high power transmit/receive switch in a variety of telecommunication systems such as WiMAX, TD-SCDMA, or LTE base stations.

The device is provided in a 4×4 mm, 16-pin Quad Flat No-Lead (QFN) package. A functional block diagram is shown in Figure 1. The pin configuration and package are shown in Figure 2. Signal pin assignments and functional pin descriptions are provided in Table 1.

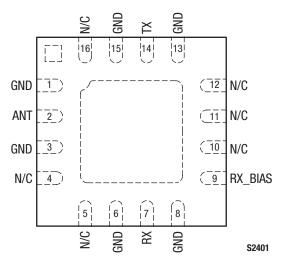


Figure 2. SKY12215-478LF Pinout – 16-Pin QFN (Top View)

Table 1. SKY12215-478LF Signal Descriptions

Pin	Name	Description	Pin	Name	Description
1	GND	Ground on the Evaluation Board. May be N/C or GND.	9	RX_BIAS	RF ground port and DC bias input port.
2	ANT	Antenna RF port and DC bias input port.	10	N/C	No connection on the Evaluation Board. May be GND or N/C.
3	GND	Ground on the Evaluation Board. May be N/C or GND.	11	N/C	No connection on the Evaluation Board. May be GND or N/C.
4	N/C	No connection on the Evaluation Board. May be GND or N/C.	12	N/C	No connection on the Evaluation Board. May be GND or N/C.
5	N/C	No connection on the Evaluation Board. May be GND or N/C.	13	GND	Ground on the Evaluation Board. May be N/C or GND.
6	GND	Ground on the Evaluation Board. May be N/C or GND.	14	TX	Transmit RF input port and DC bias input port.
7	RX	Receive output port and DC bias input port.	15	GND	Ground on the Evaluation Board. May be N/C or GND.
8	GND	Ground on the Evaluation Board. May be N/C or GND.	16	N/C	No connection on the Evaluation Board. May be GND or N/C.

Note: Center paddle must be grounded. See Figure 13 for recommended via pattern.

Electrical and Mechanical Specifications

The absolute maximum ratings of the SKY12215-478LF are provided in Table 2. Recommended operating conditions are specified in Table 3 and electrical specifications are provided in Table 4.

Typical performance characteristics of the SKY12215-478LF are illustrated in Figures 3 through 6.

The state of the SKY12215-478LF is determined by the logic provided in Table 5. Table 6 provides the logic for use with the SKY12215-478LF Evaluation Board.

Power derating data is plotted against temperature in Figures 7 and 8. Equivalent circuit diagrams for transmit and receive are shown in Figure 9.

Table 2. SKY12215-478LF Absolute Maximum Ratings

Parameter	Symbol	Minimum	Maximum	Units
RF CW input power, TX and ANT ports (Tsubstrate = 25 °C)	Pin		190	W
RF peak input power, TX and ANT ports (Tsubstrate = 25 °C, RF burst width = $10 \mu s$, RF burst repition rate = $25 kHz$)	Pin		760	W
RF CW input power, RX port (Tsubstrate = 25 °C)	Pin		60	W
RF peak input power, RX port (Tsubstrate = 25 °C, RF burst width = 10 μ s, RF burst repition rate = 25 kHz)	Pin		240	W
Control port reverse voltage	V CTL		200	V
Control port forward current	ICTL		200	mA
Operating temperature	Тор	-55	+175	°C
Storage temperature	Тѕтс	- 55	+200	°C
Electrostatic discharge:	ESD			
Charged Device Model (CDM), Class 4 Human Body Model (HBM), Class 1B Machine Model (MM), Class B			1000 500 200	V V V

Note: Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value. Exceeding any of the limits listed here may result in permanent damage to the device.

CAUTION: Although this device is designed to be as robust as possible, electrostatic discharge (ESD) can damage this device. This device must be protected at all times from ESD. Static charges may easily produce potentials of several kilovolts on the human body or equipment, which can discharge without detection. Industry-standard ESD precautions should be used at all times.

Table 3. Recommended Operating Conditions (Per ANT, TX, RX, and RX_BIAS Inputs)

Parameter	Symbol	Min	Typical	Max	Units
Control port reverse voltage	VCTL	5	28	100	V
Control port forward current	ICTL	50	100	100	mA

Table 4. SKY12215-478LF Electrical Specifications (1 of 2) (Note 1) $(T_{OP} = +25 \, ^{\circ}\text{C}$, Characteristic Impedance [Z₀] = 50 Ω , EVB Optimized for 2.6 GHz Operation, Unless Otherwise Noted)

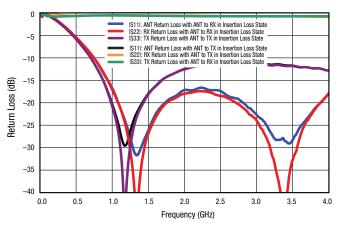
Parameter	Symbol	Test Condition	Min	Typical	Max	Units
Insertion loss, TX to ANT ports	ILTX-ANT	$V_{PIN}_2 = 2 \text{ V}, \\ I_{PIN}_14 = -100 \text{ mA}, \\ I_{PIN}_9 = -100 \text{ mA}, \\ V_{PIN}_7 = 28 \text{ V}, \\ TX \text{ port Pin @ pin } 14 = 0 \text{ dBm}:$				
		900 MHz 1.80 GHz 2.00 GHz 2.60 GHz 3.55 GHz		0.40 0.50 0.60 0.70 0.70	0.90	dB dB dB dB dB
Insertion loss, ANT to RX ports	ILANT-RX	VPIN_2 = 1 V, VPIN_14 = 28 V, IPIN_7 = -133 mA, VPIN_9 = 28 V, ANT port PIN @ pin 2 = 0 dBm:				
		900 MHz 1.80 GHz 2.00 GHz 2.60 GHz 3.55 GHz		0.50 0.30 0.35 0.45 0.38	0.60	dB dB dB dB dB
Isolation, TX to RX ports	ISO_TX-RX	$\begin{split} & \text{VPIN}_2 = 1 \text{ V}, \\ & \text{IPIN}_14 = -100 \text{ mA}, \\ & \text{IPIN}_9 = -100 \text{ mA}, \\ & \text{VPIN}_7 = 28 \text{ V}, \\ & \text{TX port Pin @ pin 14} = 0 \text{ dBm}; \end{split}$				
		900 MHz 1.80 GHz 2.00 GHz 2.60 GHz 3.55 GHz	40	31 36 37 44 36		dB dB dB dB dB
Isolation, ANT to TX ports	ISO_ANT-TX	VPIN_2 = 1 V, VPIN_14 = 28 V, IPIN_7 = -133 mA, VPIN_9 = 28 V, ANT port PIN @ pin 2 = 0 dBm:				
		900 MHz 1.80 GHz 2.00 GHz 2.60 GHz 3.55 GHz	19	29 24 24 23 21		dB dB dB dB dB
Isolation, ANT to RX ports	ISO_ANT-RX	$\begin{split} & \text{VPIN}_2 = 2 \text{ V}, \\ & \text{IPIN}_14 = -100 \text{ mA}, \\ & \text{IPIN}_9 = -100 \text{ mA}, \\ & \text{VPIN}_7 = 28 \text{ V}, \\ & \text{ANT port PIN @ pin 2} = 0 \text{ dBm}; \end{split}$				
		900 MHz 1.80 GHz 2.00 GHz 2.60 GHz 3.55 GHz	40	31 36 37 43 34		dB dB dB dB dB
Input return loss	ANT_RL	1.8 to 3.5 GHz: RX insertion loss state, ANT port (@ pin 2)		17		dB
		TX insertion loss state, TX port (@ pin 14)		13		dB

Table 4. SKY12215-478LF Electrical Specifications (2 of 2) (Note 1) (Top = +25 °C, Characteristic Impedance [Zo] = 50 Ω , EVB Optimized for 2.6 GHz Operation, Unless Otherwise Noted)

Parameter	Symbol	Test Condition	Min	Typical	Max	Units
Transmit 2 nd harmonic	2fo	TX insertion loss state, TX port PIN @ pin 14 = +30 dBm:				
		900 MHz 1.80 GHz 2.00 GHz 2.60 GHz 3.55 GHz		-72 -85 -85 -84 -89		dBc dBc dBc dBc dBc
Transmit 3 rd harmonic	3fo	TX insertion loss state, TX port P _{IN} @ pin 14 = +30 dBm:				
		900 MHz 1.80 GHz 2.00 GHz 2.60 GHz 3.55 GHz		-76 -86 -86 -98 -102		dBc dBc dBc dBc dBc
Transmit 3 rd Order Input Intercept Point	IIP3	VPIN_2 = 2 V, IPIN_14 = -100 mA, IPIN_9 = -100 mA, VPIN_7 = 28 V, TX port PIN: @ pin 14 = +30 dBm/tone, tone spacing = 1 MHz:				
Transmit 0.1 dB Input Compression Point	TX_P0.1dB	@ 2.6 GHz VPIN_2 = 2 V, IPIN_14 = -100 mA, IPIN_9 = -100 mA, VPIN_7 = 28 V:		+71		dBm
		@ 2.6 GHz		50		W
Receive 0.1 dB Input Compression Point	RX_P0.1dB	VPIN_2 = 1 V, VPIN_14 = 28 V, IPIN_7 = -133 mA, VPIN_9 = 28 V:				
		@ 2.6 GHz		50		W
Maximum transmit CW input power	TX_PIN_CW	$V_{PIN}_{-2} = 2 \text{ V}, \\ I_{PIN}_{-14} = -100 \text{ mA}, \\ I_{PIN}_{-9} = -100 \text{ mA}, \\ V_{PIN}_{-7} = 28 \text{ V}: $				
		@ 1.8 to 2.6 GHz		125		W
Maximum receive CW input power	RX_PIN_CW	VPIN_2 = 1 V, VPIN_14 = 28 V, IPIN_7 = -133 mA, VPIN_9 = 28 V:				
		@ 1.8 to 2.6 GHz		50		W
Transmit RF switching time	tsw	10% to 90% RF on, repetition rate = 0.1 MHz, @ 2.6 GHz		250		ns
Thermal resistance (junction to case)	ΘJC			9		°C/W

 $\textbf{Note 1:} \ \ \textbf{Performance is guaranteed only under the conditions listed in this table.}$

Typical Performance Characteristics


(Top = +25 °C, Characteristic Impedance [Zo] = 50 Ω , EVB Optimized for 2.6 GHz Operation, Bias = 28 V/100 mA, Unless Otherwise Noted)

-5 S21: ANT to RX Isolation with ANT to TX in Insertion Loss State -10 -15 -20 solation (dB) -25 -30 -35 -40 -45 -50 -55 -60 0.5 0.0 1.0 2.0 2.5 4.0 Frequency (GHz)

Figure 3. Insertion Loss vs Frequency

Figure 4. Isolation vs Frequency

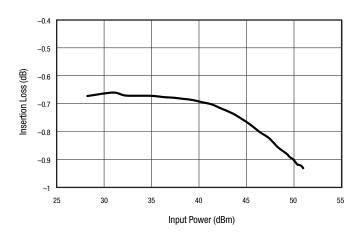


Figure 5. Return Loss vs Frequency

Figure 6. Insertion Loss vs CW Input Power (TX to ANT Port, f = 2600 MHz, 28 V, 100 mA, EVB Loss Included)

Table 5. SKY12215-478LF Truth Table

	Pa	th	Control Conditions				
Switch State	Antenna-to- Receiver Port (Pin 2 to Pin 7)	Transmitter-to- Antenna Port (Pin 14 to Pin 2)	Antenna Port Bias Input (Pin 2)	Nominal Receiver Output Port (Pin 7)	Nominal Transmitter Port Bias Input (Pin 14)	RX_BIAS Input (Pin 9)	
Receive (see Figure 9)	Low insertion loss	High isolation	1 V	–133 mA	28 V	28 V	
Transmit (see Figure 9)	High isolation	Low insertion loss	2 V	28 V	−100 mA	–100 mA	

	Pa	th	Control Conditions				
Switch State	Antenna-to- Receiver Port	Transmitter-to- Antenna Port	Antenna Port Bias Input	Receiver Output Port	Transmitter Port Bias Input	RX_BIAS Input	
Receive (see Figure 9)	Low insertion loss	High isolation	5 V	0 V (ground)	28 V	28 V	
Transmit (see Figure 9)	High isolation	Low insertion loss	5 V	28 V	0 V (ground)	0 V (ground)	

Table 6. SKY12215-478LF Evaluation Board Truth Table

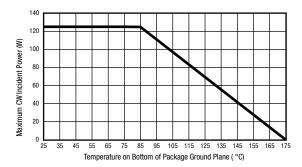
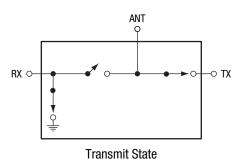



Figure 7. Transmit Power Derating, Maximum CW Incident Power (Frequency = 1.8 to 2.6 GHz) vs Ground Plane Temperature

Figure 8. Transmit Power Derating, Maximum CW Incident Power (Frequency = 1.8 to 2.6 GHz) vs Printed Circuit Board Temperature

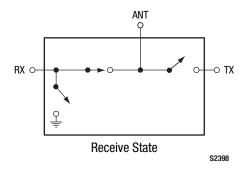


Figure 9. SKY12215-478LF Equivalent Circuit Diagrams

Evaluation Board Description

The SKY12215-478LF Evaluation Board is used to test the performance of the SKY12215-478LF PIN Diode SPDT switch. An assembly drawing for the Evaluation Board is shown in Figure 10. The layer detail physical characteristics are provided in Figure 11.

The SKY12215-478LF is designed to handle very large signals. Sufficient power may be dissipated by this switch to cause heating of the PIN diodes contained in the switch. It is very important to use a printed circuit board design that provides adequate cooling capability to keep the junction temperature of the PIN diodes below their maximum rated operating temperature.

As indicated in Figure 7, the x-axis temperature is referenced to the bottom of the QFN package. A printed circuit board with a very low thermal resistance and external heat sink design must be used to achieve the results shown in this Figure. The power derating curve with the x-axis temperature referenced to the bottom of the printed circuit board is provided in Figure 8.

The evaluation circuit is designed to facilitate control of the SKY12215-478LF transmit/receive switch with bias signals derived from positive voltages. The state of the PIN diodes within the SKY12215-478LF is controlled with 5 V applied to the ANT port and bias voltages of either 28 V or 0 V applied to the

remaining bias inputs (RX and TX ports). The switch state circuit diagrams are shown in Figure 9.

The value of resistor R1, 31 Ω , is selected to provide 100 mA of forward current through the "on" series diode with 5 V applied to the ANT port bias pin. The R2 resistance value of 262 Ω is selected to produce approximately 100 mA of forward bias current in the RX shunt diode with a source voltage of 28 V.

The magnitudes of the voltages applied to the TX and RX ports determine which of the RX or TX series diodes is biased into forward conduction. For example, to place the SKY12215-478LF into the transmit state, 0 V is applied to the TX port (which forward biases the diode between pins 2 and 14), 28 V is applied to the RX port (which reverse biases the diode between pins 2 and 7), and 0 V is applied to the RX_BIAS port (which applies a forward bias through R2 to the diode connected between pins 7 and 9).

The component values shown in the Evaluation Board circuit diagram (Figure 12) were selected to optimize performance in the 2.0 to 3.5 GHz band.

Refer to Table 7 for the Evaluation Board Bill of Materials. Table 8 provides voltage, current, and resistor values for bias adjustments.

Package Dimensions

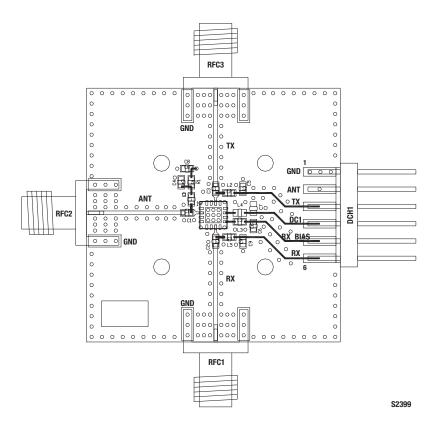
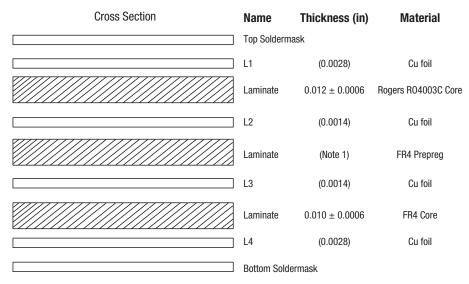
The PCB layout footprint for the SKY12215-478LF is shown in Figure 13. Typical case markings are noted in Figure 14. Package dimensions for the 16-pin QFN are shown in Figure 15, and tape and reel dimensions are provided in Figure 16.

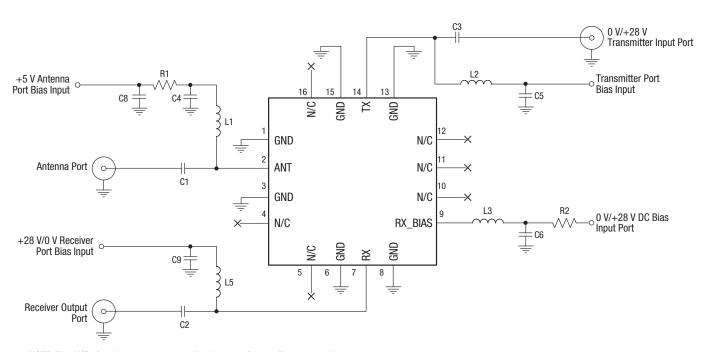
Package and Handling Information

Instructions on the shipping container label regarding exposure to moisture after the container seal is broken must be followed. Otherwise, problems related to moisture absorption may occur when the part is subjected to high temperature during solder assembly.

The SKY12215-478LF is rated to Moisture Sensitivity Level 1 (MSL1) at 260 °C. It can be used for lead or lead-free soldering. For additional information, refer to the Skyworks Application Note, *Solder Reflow Information*, document number 200164.

Care must be taken when attaching this product, whether it is done manually or in a production solder reflow environment. Production quantities of this product are shipped in a standard tape and reel format.


Figure 10. SKY12215-478LF Evaluation Board Assembly Diagram

Note 1: Adjust this thickness to meet total thickness goal of 0.062 ± 0.005 inches.

S2531

Figure 11. Layer Detail Physical Characteristics

NOTE: The N/C pins (4, 5, 10, 11, 12, and 16) are not internally connected, so they can be left open or grounded.

S2402

Figure 12. Evaluation Board Schematic

Table 7. Evaluation Board Bill of Materials (Note 1)

Component	Value	Size	Manufacturer	Mfr Part Number	Characteristics
C1, C3	1000 pF	0805	TDK	C2012C0G2E102J	COG, 250 V, ±5%
C2, C4, C5, C6, C9	1000 pF	0603	TDK	C1608C0G1H102JT	COG, 50 V, ±5%
C8	0.1 μF	0805	TDK	C2012X7R1H104K	X7R, 50 V, ±10%
L1, L2, L5	22 nH	0603	Taiyo-Yuden	HK160822NJ-T	SRF, 1600 MHz, ±5%
L3	560 nH	0603	Coil Craft	0603LS-561XJLB	SRF, 525 MHz, ±5%
R1 (Note 2)	62 Ω	0603	Panasonic	ERJ-3GEYJ620V	0.2 W, ±5%
R2 (Note 3)	262 Ω	-	-	-	Axial leaded (off board)

Note 1: Component values selected are based on the desired frequency and bias level. Values may be adjusted for a specific response.

Note 2: Two 62 Ω resistors are combined in parallel to achieve a minimum power handling requirement and 31 Ω resistance.

Note 3: Evaluation Board does not include resistor R2. Operating at 28 V and 100 mA requires resistor R2 with a power dissipation greater than 2.7 W.

Table 8. Component Calculation Values

Vs (V)	VDIODE (V)	Vres (V)	Current (A)	Resistance (Ω)	Power Dissipation (W)
28	1	27	0.10	262	2.7
5	2	3	0.10	30	0.3

Notes: Vs = supply voltage; VDIODE = voltage drop across the diode; VRES = voltage drop across the resistor.

R1 and R2 values are calculated by (Vs - VDIODE)/I, where I is the desired bias current.

The power dissipation in R1 or R2 is calculated by I x (Vs - VDIODE). The resistor selected must be safely rated with a power greater than the dissipated power.

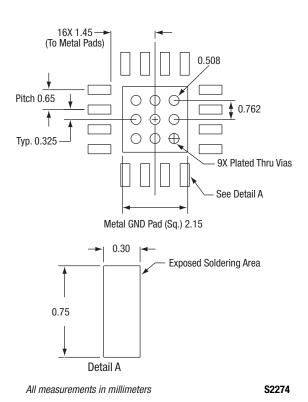


Figure 13. SKY12215-478LF PCB Layout Footprint

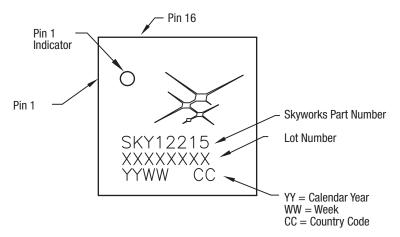
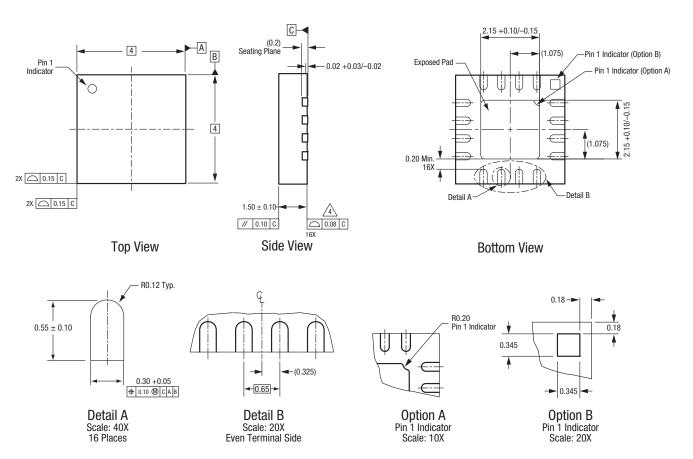
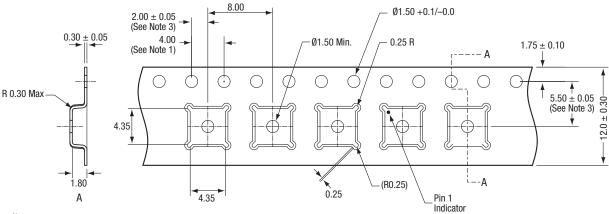



Figure 14. Typical Case Markings (Top View)

All measurements are in millimeters.

Dimensioning and tolerancing according to ASME Y14.5M-1994.


Coplanarity applies to the exposed heat sink slug as well as the terminals.

Package may have option A or option B pin 1 indicator.

S2400a

Figure 15. SKY12215-478LF 16-Pin QFN Package Dimensions

DATA SHEET • SKY12215-478LF: 125 W PIN DIODE SPDT SWITCH

Notes:

- Sprocket hole pitch cumulative tolerance: ±0.2 mm
 Carrier tape: black conductive polystyrene.
 Pocket position relative to sprocket hole, measure as true position of pocket, not pocket hole.
 Cover tape material: transparent conductive adhesive.
 SED surface resistivity must meet all ESD requirements of Skyworks, specified in GP01-D232.
 All dimensions are in millimeters.

S2817

Figure 16. SKY12215-478LF Tape and Reel Dimensions

Ordering Information

Model Name	Manufacturing Part Number	Evaluation Board Part Number
SKY12215-478LF: PIN Diode SPDT Switch	SKY12215-478LF	SKY12215-478LF-EVB

Copyright © 2013-2014 Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks Terms and Conditions of Sale

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of stated published specifications or parameters.

Skyworks and the Skyworks symbol are trademarks or registered trademarks of Skyworks Solutions, Inc., in the United States and other countries. Third-party brands and names are for identification purposes only, and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.