

FINAL DATA SHEET

SKY19237-001: 0.1 to 6.0 GHz Triple SPST (3xSPST) Shunt MIPI[®] Antenna Tuning Switch

Applications

• Aperture tuning

Features

- Broadband frequency range: 0.1 to 6.0 GHz
- Vpeak: 83 V
- Ron: 2.1 Ω
- COFF: 190 fF
- Three USIDs with single pin
- Supply voltage: 2.5 to 4.8 V
- Control logic: MIPI v1.0
- Ultra-small WLCSP (11-bump, $1.685 \times 1.775 \times 0.547$ mm [maximum], 262 μ m diameter, 400 μ m pitch) package (MSL1, 260 °C per JEDEC J-STD-020)

Skyworks GreenTM products are compliant with all applicable legislation and are halogen-free. For additional information, refer to *Skyworks Definition of Green*TM, document number SQ04-0074.

Figure 2. SKY19237-001 Pinout (Top View, Bumps Facing Down)

Figure 1. SKY19237-001 Block Diagram

Description

The SKY19237-001 is a wafer level chip scale package (WLCSP) triple-shunt, single-pole, single-throw (3xSPST) switch with integrated logic and bias block. The three paths are connected on one side to a single RF ground bump.

The part is designed to sustain a peak voltage of 83 V typical without going to breakdown.

The switching is controlled by an integrated Mobile Industry Processor Interface (MIPI) decoder.

The SKY19237-001 is provided in a compact 11-bump, 1.66 \times 1.75 \times 0.5 mm (typical) WLCSP that meets requirements for board-level assembly. Bump diameters are 262 μ m, with a minimum bump pitch of 400 μ m.

A functional block diagram is shown in Figure 1. The pin configuration and package are shown in Figure 2. Signal pin assignments and functional pin descriptions are provided in Table 1.

Pin	Name	Description	Pin	Name	Description
A1	RF1	Single ended RF port 1	B5	GND	RF ground
B1	GND	Analog ground	A3	RF2	Single-ended RF port 2
C1	VDD	Voltage supply	A5	RF3	Single-ended RF port 3
C2	VIO	MIPI control voltage	B2	USID	USID select pin
C4	CLK	MIPI clock	B4	GND	RF ground
C5	DATA	MIPI data			

Table 1. SKY19237-001 Signal Descriptions

Electrical and Mechanical Specifications

The absolute maximum ratings of the SKY19237-001 are provided in Table 2. Electrical specifications are provided in Tables 3 and 4.

Harmonic measurement frequencies are listed in Table 5. The state of the SKY19237-001 is determined by the logic provided in Table 6. Table 7 shows the RFFE MIPI reference information. Table 8 shows the command sequence bit definitions. Timing diagrams are shown in Figures 3 and 4. Figure 5 shows the recommended MIPI time sequence diagram.

Table 2. SKY19237-001 Absolute Maximum Ratings¹

1

Parameter	Symbol	Condition	Minimum	Maximum	Units
Supply voltage	Vdd	25 °C		5.5	V
Digital control voltages	Vio	25 °C	-0.5	+2.4	V
Digital control signal voltages	Vdata, VCLK	25 °C	-0.5	+2.4	V
RF maximum voltage	Vrf_max	Measured between RF ports to ground with shunt circuit configuration in 25% duty cycle RF power		85	V
RF maximum power	Pin	Measured between RF ports to ground with shunt circuit configuration in 25% duty cycle RF power		+48.6	dBm
Operating case temperature	TC		-40	+90	٥°
Storage temperature	Tstg		-55	+150	°C
Electrostatic discharge:	ESD				
Human Body Model (HBM) Charged Device Model (CDM)				2000 1000	V V

Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value. Exceeding any of the limits listed here may result in permanent damage to the device.

ESD HANDLING: Although this device is designed to be as robust as possible, electrostatic discharge (ESD) can damage this device. This device must be protected at all times from ESD when handling or transporting. Static charges may easily produce potentials of several kilovolts on the human body or equipment, which can discharge without detection. Industry-standard ESD handling precautions should be used at all times.

Parameter	Symbol	Test Condition	Min	Тур	Мах	Units
Supply voltage	Vdd		2.5	2.85	4.8	V
Digital control voltage	VIO		1.65	1.80	1.95	V
Digital control signal voltage: Low High	Vctl_low Vctl_high		0 0.8 × Vio	1.85	0.2 × Vio Vio	V V
VIO leakage current	110	VDD = 2.85 V, VIO = high		50	130	μA
Supply current	Idd	VDD = 2.85 V, $VIO = high$		70	100	μA
DC supply turn-on/turn-off time	ton	Measured from point of VDD $> 2.5 \mbox{ V}$		30	50	μs
RF path switching time	tsw	Rising edge of last clock signal that sets the switch into the desired state to final RF power ± 1 dB		15	20	μs

Table 3. SKY19237-001 DC Electrical Specifications¹ (VDD = 2.85 V, TOP = +25 °C, Characteristic Impedance [Zo] = 50 Ω , Unless Otherwise Noted)

¹ Performance is guaranteed only under the conditions listed in this table.

Table 4. SKY19237-001 RF Electrical Specifications: Small Signal ¹
(VDD = 2.85 V. Top = +25 °C. Characteristic Impedance [Zo] = 50 Ω . Unless Otherwise Noted)

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Switch ON resistance, RFx to GND	R_ON	Switch path ON, 0.1 to 1.0 GHz Switch path ON, 1.0 to 2.2 GHz Switch path ON, 2.2 to 2.7 GHz Switch path ON, 3.3 GHz Switch path ON, 4.2 GHz Switch path ON, 4.4 GHz Switch path ON, 5.0 GHz		2.1 2.2 1.9 2.2 2.6 3.1	2.3 2.4 2.5	Ω Ω Ω Ω Ω Ω
Switch OFF capacitance, RFx to GND	C_0FF	Switch path OFF, 0.1 to 2.7 GHz Switch path OFF, 3.3 GHz Switch path OFF, 4.2 GHz Switch path OFF, 4.4 GHz Switch path OFF, 5.0 GHz	170	190 195 203 206 213	220	fF fF fF fF fF
Isolation, RFx to RFx	ISO	0.7 to 1.0 GHz 1.0 to 2.2 GHz 2.2 to 2.7 GHz 3.3 GHz 4.2 GHz 4.4 GHz 5.0 GHz	40 32 30	43 35 33 32 28 26 24		dB dB dB dB dB dB dB dB

¹ Performance is guaranteed only under the conditions listed in this table.

² The value is measured with shunt configuration.

Parameter	Symbol	Test Condition	Min	Тур	Мах	Units				
VPEAK withstanding voltage ²	Vrf	f = 0.7 to 2.7 GHz f = 3.3 to 4.2 GHz f = 4.4 to 5.0 GHz	80	83 79 71		V V V				
Harmonic Specifications ²										
LTE LD harmonia 0.600 to 0.015 CUz	2fo_LB			-102	-92	dBm				
LTE LB narmonic, 0.698 to 0.915 GHZ	3fo_LB	PIN = +26 (BIII, 1:1 VSWR)		-100	-90	dBm				
LTE MUR harmonia 1 710 to 2 600 CHz	2fo_MHB	DW = 126 dPm = 1.1 VCWP		-100	-85	dBm				
	3fo_MHB	PIN = +20 ubill, 1.1 vswr		-95	-85	dBm				
LTE LP harmonia 0.609 to 0.015 CHz	2fo_LB			-95	-80	dBm				
	3fo_LB	PIN = +20 ubill, 0.1 vSWR		-97	-87	dBm				
LTE MUD harmonia 1 710 to 2 600 CUI	2fo_MHB			-95	-85	dBm				
	3fo_MHB	PIN = +20 ubill, 0.1 vSWR		-95	-80	dBm				
CCM D harmonia 0.024 to 0.015 CHz	2fo_LB			-85	-75	dBm				
GSIVI LB Harmonic, 0.824 to 0.913 GHz	3fo_LB	PIN = +35 ubill, 1.1 vown		-85	-70	dBm				
CCM LID bermenie 1 710 to 1 010 CU	2fo_MB			-95	-80	dBm				
	3fo_MB	PIN = +33 ubiii, 1.1 vswr		-84	-70	dBm				
CSM P. barmonic, 0.824 to 0.015 CHz	2fo_LB	DIN _ 125 dBm 6:1 VSWD		-80	-65	dBm				
	3fo_LB	FIN = +35 dbm, 0.1 v3wn		-75	-60	dBm				
CSM HR barmonic 1 710 to 1 010 CHz	2fo_MB	DN = 122 dBm 6.1 VSWD		-85	-70	dBm				
	3fo_MB	FIN = +35 dbm, 0.1 v3wn		-75	-65	dBm				
2nd harmonic UHB	2fo_UHB	PIN = 26 dBm, CW, 50 ohm, 3300 to 4200 MHz		-92		dBm				
3rd harmonic UHB	3fo_UHB	PIN = +26 dBm, CW, 50 ohm, 3300 to 4200 MHz		-96		dBm				
2nd harmonic UHB	2fo_UHB	PIN = +26 dBm, CW, 50 ohm, 4400 to 5000 MHz		-90		dBm				
3rd harmonic UHB	3fo_UHB	PIN = +26 dBm, CW, 50 ohm, 4400 to 5000 MHz		-86		dBm				
0.1dB input compression point	P0.1dB	Fo = 0.7 to 2.69 GHz	+48	+48.5		dBm				
Stability	Stb	$\label{eq:VSWR} \leq 10:1, $$$ P_{IN} = +35 $ dBm, 0.824 $ to 0.915 $ GHz, $$$$ P_{IN} = +33 $ dBm, 1.71 $ to 1.91 $ GHz, $$$$ Over temperature $$$$$$			-36	dBm				

Table 5. SKY19237-001 RF Electrical Specifications: Large Signal¹ (VDD = 2.85 V, TOP = +25 °C, Characteristic Impedance [Zo] = 50 Ω , Unless Otherwise Noted)

¹ Performance is guaranteed only under the conditions listed in this table.

 $^{\rm 2}$ The values are measured at switch OFF state with the shunt circuit configuration.

Table 6. SKY19237-001 Truth Table

State	Bit[2]	Bit[1]	Bit[0]
All On	1	1	1
RF1	1	0	0
RF2	0	1	0
RF3	0	0	1
RF1 + RF2	1	1	0
RF1 + RF3	1	0	1
RF2 + RF3	0	1	1
All OFF	0	0	0

Table 7. SKY19237-001 RFFE MIPI Reference Table

Register Address	Register Name	Data Bit	Bit Name	Default	R/W	Description
		7:3	RESERVED	0x0	R	Reserved for future use
					0x00: All OFF to GND	
						0x01: RF3 to GND
						0x02: RF2 to GND
0x00	STATE CONTROL	2.0		0×0	D/M	0x03: RF2 + RF3 to GND
		2.0	STATE CONTROL	0.00	n/ W	0x04: RF1 to GND
						0x05: RF1 + RF3 to GND
						0x06: RF1 + RF2 to GND
						0x07: All ON to GND
		7:6	PWR_MODE	0x0		Power Mode Control
		5	Trigger_Mask_2	0x0		If this bit is set to 1, trigger_2 is disabled
		4	Trigger_Mask_1	0x0		If this bit is set to 1, trigger_1 is disabled
0x1C	PM_TRIGER	3	Trigger_Mask_0	0x0	R/W	If this bit is set to 1, trigger_0 is disabled
		2	Trigger_2	0x0		A write of 1 to this bit loads trigger_2's registers
			Trigger_1	0x0		A write of 1 to this bit loads trigger_1's registers
		0	Trigger_0	0x0		A write of 1 to this bit loads trigger_0's registers
0x1D	PRODUCT_ID	7:0	PRODUCT_ID[7:0]	0xFC	R	Product Identification
0x1E	MANUFACTURER_ID	7:0	MANUFACTURER_ID[7:0]	0xA5	R	LSB Manufacturing Identification
		7:6	RESERVED	0x0	R	Reserved for future use
		5:4	MANUFACTURER_ID[9:8]	0x1	R	MSB Manufacturing Identification
0x1F	MAN_USID			0x6	R/W	User Identification, with pin "B2" = grounded
		3:0	USID[3:0]	0x7	R/W	User Identification, with pin "B2" = floating
				0x9	R/W	User Identification, with pin "B2" = tied to VIO

									Extended Operation					
Туре	SSC	C11- C8	C7	C6-C5	C4	C3-C0	Parity Bits	BPC	DA7(1)- DA0(1)	Parity Bits	BPC	DA7(n)- DA0(n)	Parity Bits	BPC
Reg0 Write	Y	SA[3:0]	1	Data[6:5]	Data[4]	Data[3:0]	Y	Y	-	-	-	-	-	-
Reg1 Write	Y	SA[3:0]	0	10	Addr[4]	Addr[3:0]	Y	-	Data[7:0]	-	-	-	Y	Y
Reg Read	Y	SA[3:0]	0	11	Addr[4]	Addr[3:0]	Y	Y	Data[7:0]	-	-	-	Y	Y
Legend: SSC = Sec C = Comm	quence star nand frame	rt command bits	DA = D BPC =	ata/address fra Bus park cycle	ame bits	BC = By	yte count (# d	of consecutiv	ve addresses)					
SCLK														
	SDATA			SA3 S	SA2 SA	1 X SAO X	0	1 0	A4X	A3 / /	A1	A0	P	
			SSC				Example R	Register Write	Command Frame	9				
		SCL	_K											
		SDAT	га 🗶	P D7	D6	D5 X D4	D3	D2 X	D1 D0	Р	0			
						Examp	le Data Frame)			Bus Park			
		Signal Driven Signal Not Dr For Reference	by Master iven; Pull-Dou e Only	wn Only Fi ệ	gure 3. R	egister Wri	ite Comm	nand Tim	ing Diagra	m		S3101		
	SCL	к												
	SDA	TA /		SA3	SA2 S	A1 X SA0	0	1 1	A4	A3 /	A2 A1	A0	P	
			SSC				Example	Register Read	I Command Fram	le				
			SCLK											

Table 8. SKY19237-001 Command Sequence Bit Definitions

Ρ

0

Bus Park

SDATA

Signal Driven by Master Signal Not Driven; Pull-Down Only Signal Driven by Slave For Reference Only

D7

D6

D5

D4

D3

Example Data Frame

D2

D1

D0

Ρ

0

Bus Park

203329D-004

Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com 203679H • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • June 11, 2020

Figure 4. Register Read Command Timing Diagram

Note: VDD and VIO power time are independent from each other. Users can power-on either bias in a random sequence, or leave one on and the other off

Evaluation Board Description

The SKY19237-001 Evaluation Board is used to test the performance of the SKY19237-001 3xSPST Switch.

An Evaluation Board schematic diagram is provided in Figure 6. An assembly drawing for the Evaluation Board is shown in Figure 7.

Figure 6. SKY19237-001 Evaluation Board Schematic (2-Port Shunt Configuration)

Figure 7. SKY19237-001 Evaluation Board Assembly

Package Dimensions

The PCB layout footprint is shown in Figure 8. Typical part markings are shown in Figure 9. Package dimensions for the SKY19237-001 are shown in Figure 10, and tape and reel dimensions are provided in Figure 11.

Package and Handling Information

Instructions on the shipping container label regarding exposure to moisture after the container seal is broken must be followed. Otherwise, problems related to moisture absorption may occur when the part is subjected to high temperature during solder assembly.

The SKY19237-001 is rated to Moisture Sensitivity Level 1 (MSL1) at 260 °C. It can be used for lead or lead-free soldering. For additional information, refer to the Skyworks Application Note, *Wafer Level Chip Scale Packages: SMT Process Guidelines and Handling Considerations*, document number 201676.

Care must be taken when attaching this product, whether it is done manually or in a production solder reflow environment. Production quantities of this product are shipped in a standard tape and reel format.

(Top View)

FINAL DATA SHEET • SKY19237-001: 0.1 to 6.0 GHz Triple SPST (3xSPST) Shunt MIPI® Antenna Tuning Switch

- 3. Ball height tolerance is $\pm 10\%$ of nominal ball height.
- 4. Includes backside coating.

203679B-007

Figure 11. SKY19237-001 Tape and Reel Dimensions

Ordering Information

Part Number	Product Description	Evaluation Board Part Number
SKY19237-001	0.1 to 6.0 GHz Triple SPST (3xSPST) Shunt MIPI Antenna Tuning Switch	SKY19237-001-EVB

Copyright © 2015-2018, 2020 Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks Terms and Conditions of Sale.

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of stated published specifications or parameters.

Skyworks and the Skyworks symbol are trademarks or registered trademarks of Skyworks Solutions, Inc. or its subsidiaries in the United States and other countries. Third-party brands and names are for identification purposes only and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.