

FEATURES

- 1 GHz Specified Performance
- 22 dB Gain
- Very Low Distortion
- Excellent 75 Ω Input and Output Match
- Stable with High VSWR Load Conditions
- Monolithic Design for Consistent Performance
 Part-to-Part
- Low DC Power Consumption
- Surface Mount Package Compatible with Automatic Assembly
- Low Cost Alternative to Hybrids
- Meets Cenelec Standards
- Materials set consistent with RoHS Directives.

APPLICATIONS

 CATV Line Amplifiers, System Amplifiers, Distribution Nodes

PRODUCT DESCRIPTION

The ACA2402 is a highly linear, monolithic GaAs RF amplifier that has been developed as an alternative to standard CATV hybrid amplifiers. Offered in a convenient surface mount package, the MMIC consists of two pairs of parallel amplifiers that are optimized for exceptionally low distortion and noise figure. A

hybrid equivalent that provides flat gain response and excellent input and output return loss over the 40 to 1000 MHz CATV downstream band is formed when one ACA2402 is cascaded between two appropriate transmission line baluns.

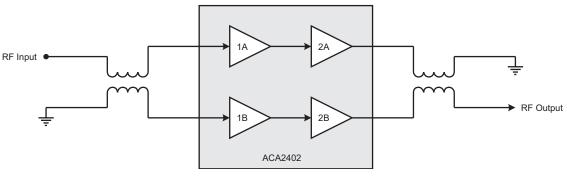


Figure 1: Hybrid Application Diagram

ACA2402 750/870/1000 MHz CATV Push-Pull Line Amplifier Data Sheet

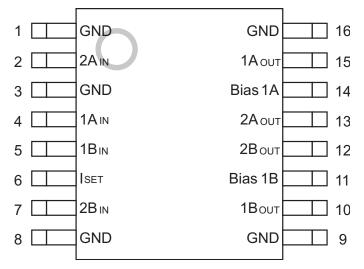


Figure 2: Pin Out

PIN	NAME	DESCRIPTION	PIN	NAME	DESCRIPTION
1	GND	Ground	16	GND	Ground
2	2Ain	Amplifier 2A Input	15	1Аоит	Amplifier 1A Output
3	GND	Ground	14	Bias 1A	Bias for 1A Amplifier
4	1A1N	Amplifier 1A Input	13	2А оит	Amplifier 2A Output and Supply
5	1B⊪	Amplifier 1B Input	12	2 Воит	Amplifier 2B Output and Supply
6	1set	Current Adjust	11	Bias 1B	Bias for 1B Amplifier
7	2B⊪	Amplifier 2B Input	10	1Воит	Amplifier 1B Output
8	GND	Ground	9	GND	Ground

ELECTRICAL CHARACTERISTICS

			-	
PARAMETER	MIN	MAX	UNIT	
Supply (pins 12, 13)	0	+28	VDC	
RF Power at Inputs (pins 4, 5)	1	+75	dBmV	
Storage Temperature	-65	+150	°C	
Soldering Temperature	-	+260	°C	
Soldering Time	-	5.0	Sec	
Ctransa in average of the charleste retires many source retrieves				

Table 2: Absolute Mimimum and Maximum Ratings

Stresses in excess of the absolute ratings may cause permanent damage. Functional operation is not implied under these conditions. Exposure to absolute ratings for extended periods of time may adversely affect reliability.

Notes:

- 1. Pins 2, 4, 5 and 7 should be AC-coupled. No external DC bias should be applied.
- 2. Pin 6 should be AC-grounded and/or pulled to ground through a resistor for current control. No external DC bias should be applied.
- 3. Pins 11 and 14 are bias feeds for input amplifiers 1A and 1B. No external DC bias should be applied.
- 4. Pins 10 and 15 receive DC bias directly from pins 11 and 14. No other external bias should be applied.

PARAMETER	MIN	TYP	MAX	UNIT
Supply: Vod (pins 12, 13)	-	+24	-	VDC
RF Frequency	40	-	1000	MHz
Case Temperature	-40	-	+110	°C

Table 3: Operating Ranges

The device may be operated safely over these conditions; however, parametric performance is guaranteed only over the conditions defined in the electrical specifications.

ACA2402

Table 4: AC and DC Electrical Specifications (T_A = +25 °C, V_{DD} = +24 VDC)

PARAMETER	MIN	ТҮР	МАХ	UNIT	COMMENTS
Gain @ 1000 MHz ⁽¹⁾	21.1	21.6	22.1	dB	
Cable Equivalent Slope (1)	-	0	-	dB	
Gain Flatness ⁽¹⁾ @ 1000 MHz	-	□0.2	-	dB	
Noise Figure (1)	-	3.5	4.5	dB	
CTB ⁽¹⁾ 77 Channels ⁽²⁾ 77 Channels plus QAM to 1 GHz ⁽⁶⁾ 110 Channels ⁽³⁾ 110 Channels plus QAM to 1 GHz ⁽⁷⁾ 128 Channels ⁽⁴⁾	- - -	-76 - -73 - -70	-74 -74 -71 -71	dBc	
CSO ⁽¹⁾ 77 Channels ⁽²⁾ 77 Channels plus QAM to 1 GHz ⁽⁶⁾ 110 Channels ⁽³⁾ 110 Channels plus QAM to 1 GHz ⁽⁷⁾ 128 Channels ⁽⁴⁾	- - - -	-72 - -72 - -69	-70 -70 -70 -68 -	dBc	
XMOD ⁽¹⁾ 77 Channels ⁽²⁾ 77 Channels plus QAM to 1 GHz ⁽⁶⁾ 110 Channels ⁽³⁾ 110 Channels plus QAM to 1 GHz ⁽⁷⁾ 128 Channels ⁽⁴⁾		-65 - -65 - -62	-63 -63 -63 -63 -	dBc	
Return Loss (Input/Output) (1)	18	22	-	dB	75 ⊡system
Supply Current (5)	240	250	260	mA	
Thermal Resistance	-	-	3.8	°C/W	

Notes:

(1) Measured with baluns on the input and output of the device.

(2) Parts measured with 77 channels flat output, +42 dBmV per channel.

(3) Parts measured with 110 channels flat output, +40 dBmV per channel.

(4) Parts measured with 128 channels flat output, +40 dBmV per channel.

(5) The supply current may be reduced by decreasing the value of R3 (see Figure 17)

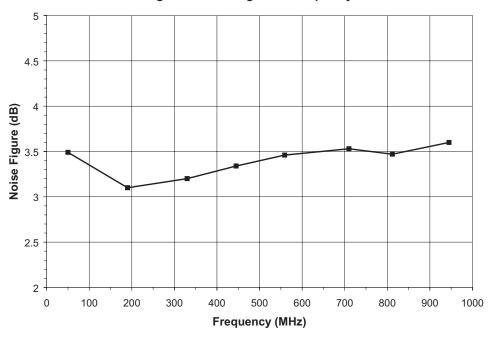
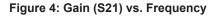
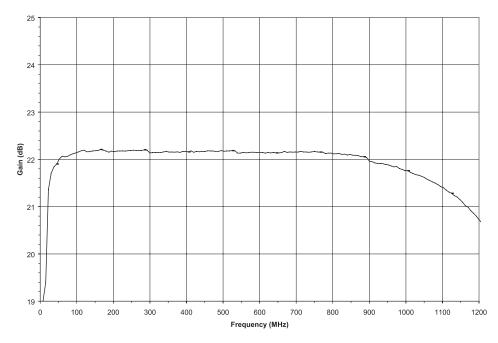
(6) 47.5 dBmV output, 9.5 dB tilt @ 1 GHz

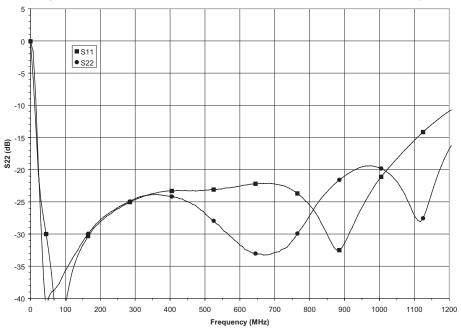
(7) 45.5 dBmV output, 9.5 dB tilt @ 1 GHz

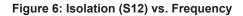
8. All specifications as measured on Evaluation Board (see Figures 16 & 17).

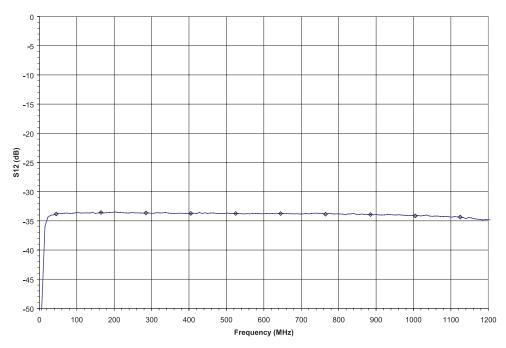
4

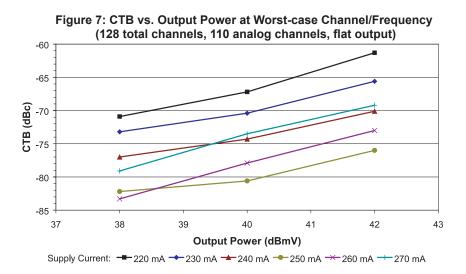
PERFORMANCE DATA

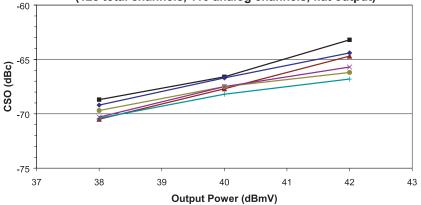




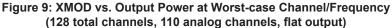

Figure 3: Noise Figure vs Frequency

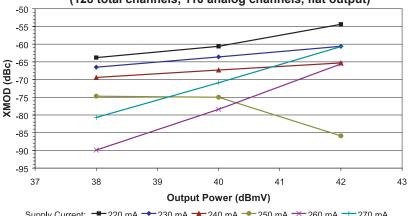


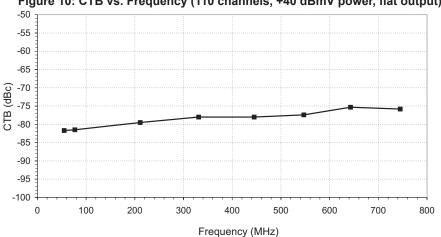

Data Sheet 204204B • Skyworks Proprietary and Confidential Information • Products and Product Information are Subject to Change Without Notice • September 19, 2016


6









Supply Current: ---- 220 mA → 230 mA → 240 mA → 250 mA → 260 mA → 270 mA

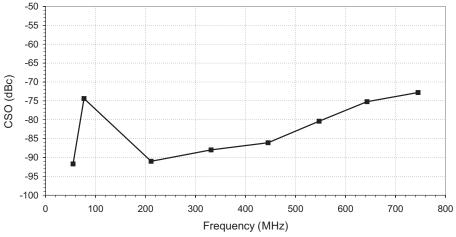
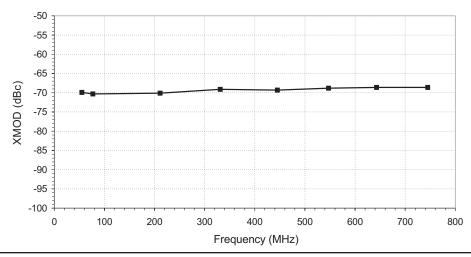



Figure 12: XMOD vs. Frequency (110 channels, +40 dBmV power, flat output)

Data Sheet
September 19, 2016 • Skyworks Proprietary and Confidential Information • Products and Product Information are Subject to Change Without Notice • 204204B

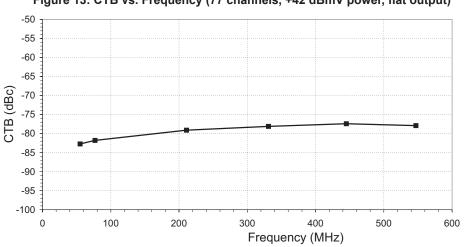
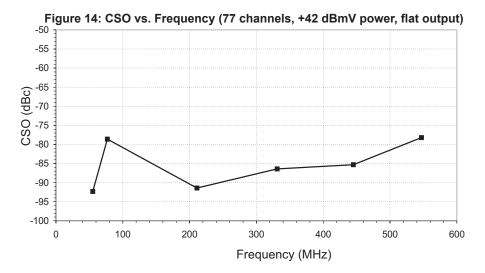
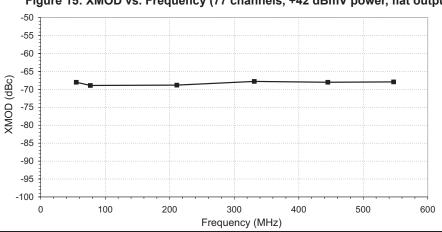
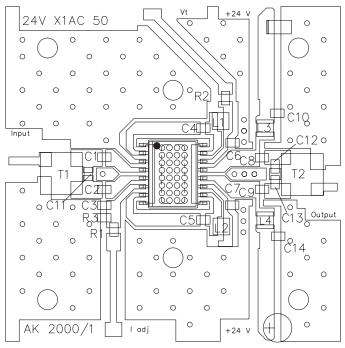




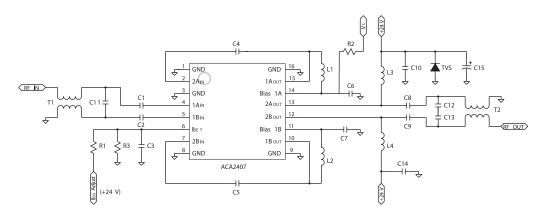
Figure 13: CTB vs. Frequency (77 channels, +42 dBmV power, flat output)

Data Sheet

ACA2402

APPLICATION INFORMATION




Figure 16: Evaluation Board Layout

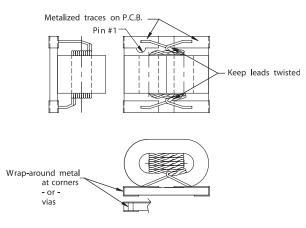
Notes:

1. Via holes should be 35 mils (0.89 mm) in diameter, and plated to 1 mil (0.025 mm) thickness. They need not be solder-filled.

2. WARNING: Due to the power dissipation of this device, the printed circuit board should be mounted/attached to a heat sink.

3. More assembly details, such as via hole diameters, via spacing, solder paste application, and soldering recommendations are provided in the application note entitled, "Thermal Management of Surface Mounted Amplifiers".

REF	DESCRIPTION	QTY	VENDOR	VENDOR P/N
C1, C2, C3, C6, C7, C10, C14	0.01 ⊡F CHIP CAP	7	MURATA	GRM39X7R103K50V
C4, C5, C8, C9	470 pF CHIP CAP	4	MURATA	GRM39X7R471K50V
C12, C13	1.0 pF CHIP CAP	2	MURATA	GRM36COG1R0C50
C15	47 🕞 ELECT. CAP	1	DIGI-KEY CORP	P5275-ND
R1, R2, C11	NOT USED			
R3	18 k⊡RESISTOR	1	DIGI-KEY CORP	P18KGCT-ND
TVS	TVS 24 VOLT 600 WATT	1	DIGI-KEY CORP	SMBJ24ACCCT-ND
L1, L2, L3, L4 ⁽³⁾	680 nH INDUCTOR	4	COILCRAFT	1008CS-681XKBC
CONNECTOR (1)	75 ⊡N MALE PANEL MOUNT	2	PASTERNACK ENTERPRISES	PE4504
T1, T2 ⁽²⁾	Ferrite Core	2	FAIR-RITE	2843002702
(BALUN)	Wire		MWS WIRE IND.	T-2361429-20
	Printed Circuit Board	1	Standard Printed Circ. Inc	24VX1AC50
INDIUM	300 X 160 MILS	1	INDIUM CORP OF AMERICA	14996Y


Table 5: Evaluation Board Parts List

Notes:

(1) N connector center pin should be approximately 80 mils in length.

(2) T1, T2 balun: 5.5 turns thru, as shown in Figure 18.

(3) 200 mA minimum current rating.

Figure 18: Balun Drawing

ACA2402

PACKAGE OUTLINE

A2 0.087

В 0.013

С 0.007

D

Е

е

Н

h

L LE 0.052

α

S

Т

R

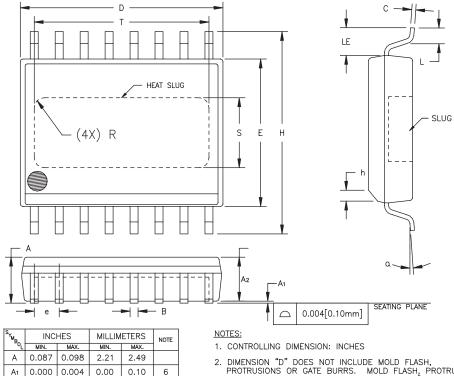
0.398

0.290

0.394

0.010

0.024


0°

0.120

0.330

REF. 0.015

0.050 BSC

2.21

0.33

0.18

10.11

7.37

10.01

0.25

0.61

1.32

0.

3.05

8.38

REF. 0.38

2.39

0.48

0.23

10.46

7.62

10.62

0.71

1.02

8'

3.56

8.89

1.27 BSC

2

3

4

5

5

5

0.094

0.019

0.009

0.412

0.300

0.418

0.028

0.040

8'

0.140

0.350

- DIMENSION "D" DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.006 [0.15mm] PER SIDE.
- DIMENSION "E" DOES NOT INCLUDE INTER-LEAD FLASH OR PROTRUSIONS. INTER-LEAD FLASH AND PROTRUSIONS SHALL NOT EXCEED 0.010 [0.25mm] PER SIDE.
- 4. MAXIMUM LEAD TWIST/SKEW TO BE ±0.005 [0.13mm].
- 5. DIMENSIONS "S", "T" AND "R" INDICATE EXPOSED SLUG AREA.
- 6. STANDOFF HEIGHT (A1) MEASURED FROM BOTTOM OF SLUG.

ORDERING INFORMATION

ORDER NUMBER	TEMPERATURE RANGE	PACKAGE DESCRIPTION	COMPONENT PACKAGING
ACA2402S7TR	-40 to 110 °C	16 Pin Wide Body SOIC with Heat Slug	1,500 piece tape and reel
ACA2402RS7P2	-40 to 110 °C	RoHS-Compliant 16 Pin Wide Body SOIC with Heat Slug	1,500 piece tape and reel
ACA2402S7P0	-40 to 110 °C	16 Pin Wide Body SOIC with Heat Slug	Plastic tubes (50 pieces per tube)
ACA2402RS7P0	-40 to 110 °C	RoHS-Compliant 16 Pin Wide Body SOIC with Heat Slug	Plastic tubes (50 pieces per tube)

Copyright © 2016 Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks Terms and Conditions of Sale.

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications.

Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of stated published specifications or parameters.

Skyworks and the Skyworks symbol are trademarks or registered trademarks of Skyworks Solutions, Inc., in the United States and other countries. Third-party brands and names are for identification purposes only, and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.

Skyworks Solutions, Inc.

Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com Skyworks Proprietary and Confidential information • Products and Product Information are Subject to Change Without Notice