

DATA SHEET

OLF300: Hermetic Surface-Mount High-Speed Optocoupler

Features

- Hermetic SMT package
- Electrical parameters guaranteed over $-55\ ^\circ\text{C}$ to $+125\ ^\circ\text{C}$ ambient temperature range
- 1000 VDC electrical isolation
- High-speed, 1 Mbps typical
- Open collector output
- 300 kHz bandwidth
- Similar to 6N135/136, 4N55
- Radiation tolerant
- Offers 100% high-reliability screenings

Description

The OLF300 is suitable for interfacing TTL to LSTTL, TTL, or CMOS, as well as wide bandwidth analog applications. Each OLF300 has an LED and an integrated photo-diode transistor detector mounted and coupled in a custom 8-pin hermetic flat-pack package, providing 1000 Voe of electrical isolation between the input and output. The integrated photo-diode transistor improves the switching speed by orders of magnitude as compared to standard photo transistors by reducing the base-to-collector capacitance. The internal shield provides excellent common-mode immunity performance.

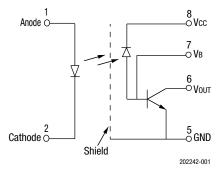


Figure 1. OLF300 Block Diagram

Figure 1 shows the OLF300 functional block diagram. Table 1 provides the OLF300 absolute maximum ratings. Table 2 provides the OLF300 electrical specifications.

Figures 2 through 4 illustrate the OLF300 typical performance characteristics. Figure 5 shows the OLF300 switching test circuit. Figure 6 provides the OLF300 package dimensions.

Table 1. OLF300 Absolute Maximum Ratings¹

Parameter	Symbol	Minimum	Maximum	Units			
Coupled							
Input to output isolation voltage ²	VDC		±1000	V			
Storage temperature range	Тѕтс	-65	+150	٥°			
Operating temperature range	ТА	-55	+125	٥°			
Lead temperature (1.6 mm from case from 10 seconds)			+240	°C			
Input Diode							
Average input current	Idd		20	mA			
Peak forward current (≤1 ms duration)	lF		40	mA			
Reverse voltage	VR		5	V			
Power dissipation	Pd		36	mW			
Output Detector							
Average output current			8	mA			
Peak output current			16	mA			
Supply voltage	Vcc	-0.5	+18.0	V			
Output voltage	Vout	-0.5	+18.0	V			
Power dissipation	PD		50	mW			

1 Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value. Exceeding any of the limits listed here may result in permanent damage to the device.

 2 Measured between pins 1, 2, 3, and 4 shorted together, and pins 5, 6, 7, and 8 shorted together. TA = 25 °C and duration = 1 second.

ESD HANDLING: Although this device is designed to be as robust as possible, electrostatic discharge (ESD) can damage this device. This device must be protected at all times from ESD when handling or transporting. Static charges may easily produce potentials of several kilovolts on the human body or equipment, which can discharge without detection. Industry-standard ESD handling precautions should be used at all times.

Parameter	Symbol	Test Condition	Minimum	Typical	Maximum	Units
Current transfer ratio ²	CTR	$I_F = 16 \text{ mA}, V_0 = 0.4 \text{ V}, V_{CC} = 4.5 \text{ V}$	20.0	45.0		%
Logic:						
High output current Low supply current High supply current	ІОН ІССL ІССН	IF = 0 mA, Vo = Vcc = 15.0 V IF = 10 mA, Vcc = 15 V, Vo = open IF = 0 mA, Vcc = 15.0 V, Vo = open		0.05 40 0.05	100.00 200 10.0	μΑ μΑ μΑ
Input:						
Forward voltage Reverse breakdown voltage Input to output leakage current ³	Vf Bvr Ii_o	IF = 10.0 mA IR = 10 μA RH ≤45%, TA = 25 °C, VI_0 = 1000.0 VDc	3	1.7	2.5 1.0	V V µA
Propagation delay time:						
Logic high to low Logic low to high	tphl tplh	F = 16 mA, Vcc = 5 V RL = 8.2 kΩ, CL = 50 pF		0.3 0.8	2.0 6.0	μs μs
Common mode transient immunity: ²						
Logic high level	СМн	$IF=0,RL=8.2\Omega,VCM=10Vp\text{-}p$		> 1		kV
Logic low level	CM∟	$I_F = 16, R_L = 8.2 \Omega, VCM = 10 Vp-p$		> 1		kV

Table 2. 0LF300 Electrical Specifications1(TA = 55 °C to + 125 °C, Unless Otherwise Noted)

¹ Performance is guaranteed only under the conditions listed in the above table.

² CTR is defined as the ratio of the output collector current lc to the forward LED current IF, multiplied by 100%.

³ Measured between pins 1, 2, 3, and 4 shorted together, and pins 5, 6, 7, and 8 shorted together. $T_A = 25$ °C and duration = 1 second.

Typical Performance Characteristics

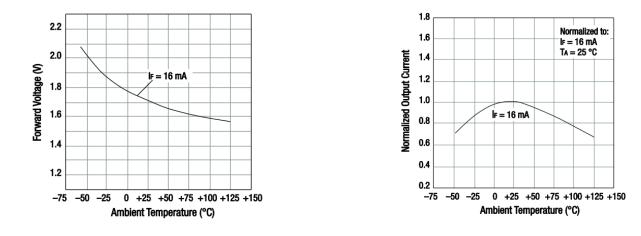
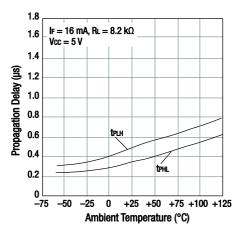



Figure 2. LED Forward Voltage vs Temperature

Figure 3. Normalized Output Current vs Temperature

Figure 4. Propagation Delay vs Temperature

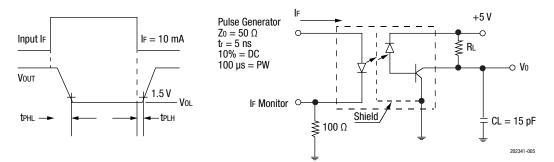


Figure 5. OLF300 Switching Test Circuit

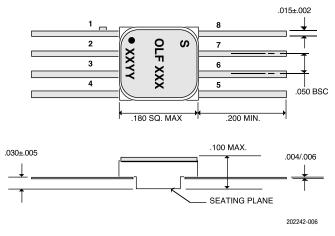


Figure 6. OLF300 Package Dimensions

Ordering Information

Model Name	Manufacturing Part Number
OLF300: Hermetic Surface-Mount High-Speed Optocoupler	0LF300

Copyright © 2012, 2017 Isolink, Inc. All Rights Reserved.

Information in this document is provided in connection with Isolink, Inc. ("Isolink"), a wholly-owned subsidiary of Skyworks Solutions, Inc. These materials, including the information contained herein, are provided by Isolink as a service to its customers and may be used for informational purposes only by the customer. Isolink assumes no responsibility for errors or omissions in these materials or the information contained herein. Isolink may change its documentation, products, services, specifications or product descriptions at any time, without notice. Isolink makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Isolink assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Isolink products, information or materials, except as may be provided in Isolink Terms and Conditions of Sale.

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. ISOLINK DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. ISOLINK SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Customers are responsible for their products and applications using lsolink products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Isolink assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Isolink products outside of stated published specifications or parameters.

Isolink is a trademark of Isolink Inc. in the United States and other countries. Skyworks and the Skyworks symbol are trademarks or registered trademarks of Skyworks Solutions, Inc., in the United States and other countries. Third-party brands and names are for identification purposes only, and are the property of their respective owners.