

DATA SHEET

OLH500: High CMR, High-Speed Logic Gate Hermetic Optocoupler

Features

- Performance guaranteed over –55 °C to +125 °C ambient temperature range
- Guaranteed minimum Common Mode Rejection (CMR) transient immunity, >1000 V/μs
- 1000 Vpc electrical isolation
- Low-Power Schottky Transistor-Transistor Logic (LSTTL)/ Transistor-to-Transistor Logic (TTL) compatible
- High-speed, 10 Mbps typical
- Low input LED current
- Similar to 6N134, 6N137, and HCPL2601
- Radiation tolerant
- Offers 100% high reliability screenings

Description

The OLH500 is suitable for high-speed digital interfacing applications, elimination of ground loops, and input/output buffering. Each OLH500 has an LED and integrated high-speed detector mounted and coupled in a T0-5 hermetic package, that provides 1000 Vpc electrical isolation between the input and output. The light from the LED is collected by the photo-diode in the integrated detector and amplified by a high gain linear amplifier that drives a Schottky-clamped open collector output transistor. Typical propagation delay for the OLH500 is 60 ns. The internal shield improves common mode transient immunity to $1000 \ \text{V/}\mu\text{s}$ minimum.

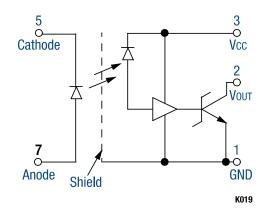


Figure 1. OLH500 Block Diagram

Figure 1 shows the OLH500 functional block diagram. Table 1 provides the OLH500 absolute maximum ratings. Table 2 provides the OLH500 electrical specifications.

Figures 2 through 5 illustrate the OLH500 typical performance characteristics. Figure 6 shows the OLH500 switching test circuit. Figure 7 provides the OLH500 package dimensions.

DATA SHEET • OLH500: HIGH CMR, HIGH-SPEED LOGIC GATE HERMETIC OPTOCOUPLER

Table 1. OLH500 Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Minimum	Maximum	Units
Coupled				
Input to output isolation voltage (Note 2)	VDC	-1000	+1000	V
Storage temperature range	Тѕтс	-65	+150	°C
Operating temperature range	TA	-55	+125	°C
Lead temperature (1.6 mm from case for 10 seconds)			+240	°C
Total power dissipation	PD		+170	mW
Input Diode				
Average input current	IDD		20	mA
Peak forward current (≤1 ms duration)	l _F		40	mA
Reverse voltage	VR		5	V
Power dissipation	Po		36	mW
Output Detector				
Peak output current			25	mA
Supply voltage (1 minute maximum)	Vcc		7	V
Output collector power dissipation	Po		40	mW

Note 1: Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value. Exceeding any of the limits listed here may result in permanent damage to the device.

CAUTION: Although this device is designed to be as robust as possible, electrostatic discharge (ESD) can damage this device. This device must be protected at all times from ESD. Static charges may easily produce potentials of several kilovolts on the human body or equipment, which can discharge without detection. Industry-standard ESD precautions should be used at all times.

Note 2: Measured between pins 1, 2, and 3 shorted together, and pins 5, 6, and 7 shorted together. Ta = 25°C and duration = 1 second.

Table 2. OLH500 Electrical Specifications (Note 1) $(T_A = -55 \,^{\circ}\text{C}$ to +125 $^{\circ}\text{C}$, Unless Otherwise Noted)

Parameter	Symbol	Test Condition	Minimum	Typical	Maximum	Units
Low level output voltage (Note 2)	Vol	Vcc = 5.5 V, lol = 10 mA, lf = 5 mA		0.4	0.6	٧
High level output current (Note 2)	Іон	$Vcc = Vo = 5.5 \text{ V}, \text{ If } = 250 \mu\text{A}$		5	250	μА
High level supply current (Note 2)	Іссн	Vcc = 5.5 V, IF = 0 mA		11	16	mA
Low level supply current (Note 2)	ICCL	Vcc = 5.5 V, IF = 5 mA		16	20	mA
Input forward voltage	VF	IF = 10 mA		1.8	2.5	V
Input reverse breakdown voltage	Bvr	I _F = 10 μA	3			V
Input to output leakage current (Note 3)	lı_o	Relative humidity \leq 50%, TA = 25 °C, $V_{I_0} = 1000 \text{ Vpc}$			1	μА
Propagation delay time (Note 2):						
Logic high to low	t PHL	IF = 7.5 mA, Vcc = 5 V, RL = 510 Ω		60	140	ns
Logic low to high	t pLH	IF = 7.5 mA, Vcc = 5 V, RL = 510 Ω		60	140	ns
Common mode transient immunity (Note 2):						
High output	СМн	$\label{eq:Vcm} \begin{array}{l} \mbox{Vcm} = 50 \mbox{ V peak, Vo (minimum)} = 2.0 \mbox{ V,} \\ \mbox{RL} = 510 \Omega, \mbox{I}_{\mbox{\scriptsize F}} = 0 \mbox{ mA, T}_{\mbox{\scriptsize A}} = 25 ^{\circ}\mbox{C} \end{array}$	1000 10,000			V/µs
Low output	CML	V _{CM} = 50 V peak, V ₀ (minimum) = 0.8 V, R _L = 510 Ω , I _F = 5 mA, T _A = 25 °C 1000		10,000		V/µs

Note 1: Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value. Exceeding any of the limits listed here may result in permanent damage to the device.

Note 2: A ceramic bypass capacitor (0.01 µF to 0.1 µF) is required between pins 3 and 5 to stabilize the operation of the amplifier.

Note 3: Measured between pins 1, 2, 3, and 4 shorted together, and pins 5, 6, 7, and 8 shorted together. TA = 25°C and duration = 1 second.

Typical Performance Characteristics

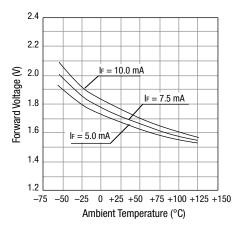
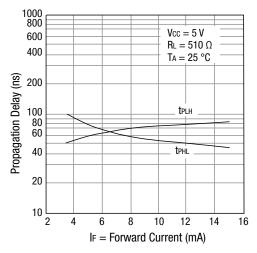



Figure 2. Input Diode Forward Voltage vs Temperature

Figure 4. Propagation Delay vs Input Forward Current

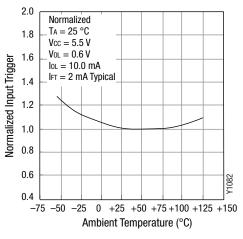


Figure 3. Normalized Input Trigger Current vs Temperature

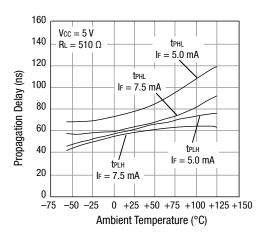


Figure 5. Propagation Delay vs Temperature

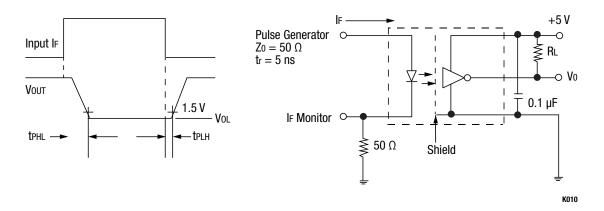


Figure 6. OLH500 Switching Test Circuit

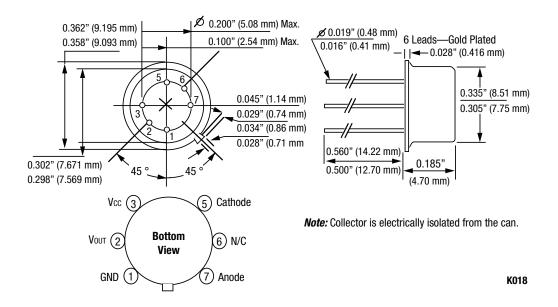


Figure 7. OLH500 Package Dimensions

Ordering Information

Model Name	Manufacturing Part Number			
OLH500: High CMR, High-Speed Logic Gate Hermetic Optocoupler	OLH500			

Copyright © 2012-2015, 2017 Isolink, Inc. All Rights Reserved.

Information in this document is provided in connection with Isolink, Inc. ("Isolink"), a wholly-owned subsidiary of Skyworks Solutions, Inc. These materials, including the information contained herein, are provided by Isolink as a service to its customers and may be used for informational purposes only by the customer. Isolink assumes no responsibility for errors or omissions in these materials or the information contained herein. Isolink may change its documentation, products, services, specifications or product descriptions at any time, without notice. Isolink makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Isolink assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Isolink products, information or materials, except as may be provided in Isolink Terms and Conditions of Sale.

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. ISOLINK DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. ISOLINK SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Customers are responsible for their products and applications using Isolink products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Isolink assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Isolink products outside of stated published specifications or parameters.

Isolink is a trademark of Isolink Inc. in the United States and other countries. Skyworks and the Skyworks symbol are trademarks or registered trademarks of Skyworks Solutions, Inc., in the United States and other countries. Third-party brands and names are for identification purposes only, and are the property of their respective owners.