

# **DATA SHEET**

# SKYA21051: 200 to 6000 MHz Broadband Low-Noise Amplifier

# **Automotive Applications**

- In-cabin cellular telematics repeater
- Japan Intelligent Transport Systems 700 MHz Rx LNA: ARIB STD-T109
- FDD and TDD 2G/3G/4G LTE, LTE-A systems
- Active antenna array and MIMO
- · Low-noise broadband gain block and driver amplifier

### **Features**

- AEC-Q100 grade-2 qualification pending
- Enhanced ruggedness meeting bHAST/THB qualification requirements
- Level-3 PPAP available on request
- IMDS material declaration supported
- Extended production life to support automotive requirements
- Excellent broadband flat gain performance
- Low noise figure
- High IP3 performance over voltage
- Single matching circuit for 200 to 6000 MHz
- · Adjustable supply current from 30 to 100 mA
- Flexible bias voltage: 3 to 5 V
- Fast rise/fall time ENABLE function suitable for TDD application
- Temperature and process-stable active bias up to +105 °C
- Miniature DFN (8-pin, 2 x 2 mm) package (MSL1 @ 260 °C per JEDEC J-STD-020)



Skyworks Green<sup>™</sup> products are compliant with all applicable legislation and are halogen-free. For additional information, refer to *Skyworks Definition of Green*<sup>™</sup>, document number SQ04-0074.

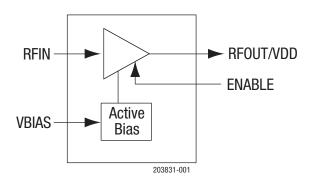
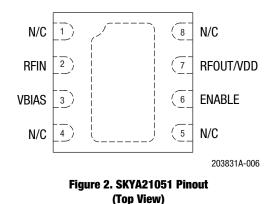



Figure 1. SKYA21051 Block Diagram


#### **Description**

The SKYA21051 is an automotive ultra-broadband low-noise amplifier with superior gain flatness and exceptional linearity.

The compact 2 x 2 mm, 8-pin Dual Flat No Lead packaged LNA is designed for FDD and TDD 2G/3G/4G LTE small-cell base stations operating from 200 to 6000 MHz.

The internal active bias circuitry provides stable performance over temperature and process variation. The device offers the ability to externally adjust supply current.

A functional block diagram is shown in Figure 1. The pin configuration and package are shown in Figure 2. Signal pin assignments and functional pin descriptions are provided in Table 1.



#### Table 1. SKYA21051 Signal Descriptions

| Pin | Name  | Description                                                                                              | Pin | Name      | Description                                                                        |
|-----|-------|----------------------------------------------------------------------------------------------------------|-----|-----------|------------------------------------------------------------------------------------|
| 1   | N/C   | No connection. May be left open, connected to VDD, or connected to ground with no change in performance. | 5   | N/C       | No connection. May be connected to ground with no change in performance.           |
| 2   | RFIN  | RF input. DC blocking capacitor required.                                                                | 6   | ENABLE    | Enable pin. Active low = amplifier ON state.                                       |
| 3   | VBIAS | Bias voltage for input gate. External resistor sets current consumption.                                 | 7   | RFOUT/VDD | RF output. Apply VDD through RF choke inductor.<br>DC blocking capacitor required. |
| 4   | N/C   | No connection. May be connected to ground with no change in performance.                                 | 8   | N/C       | No connection. May be connected to ground with no change in performance.           |

#### **Electrical and Mechanical Specifications**

The absolute maximum ratings of the SKYA21051 are provided in Table 2. Electrical specifications are provided in Tables 3 through 7.

Typical performance characteristics are illustrated in Figures 3 through 35.

#### Table 2. SKYA21051 Absolute Maximum Ratings<sup>1</sup>

| Parameter                                                                                              | Symbol | Minimum | Maximum           | Units       |
|--------------------------------------------------------------------------------------------------------|--------|---------|-------------------|-------------|
| Supply voltage                                                                                         | Vdd    |         | 5.5               | V           |
| Quiescent supply current                                                                               | Ισα    |         | 100               | mA          |
| RF input power (C/W)                                                                                   | Pin    |         | +21               | dBm         |
| Storage temperature                                                                                    | Tstg   | -40     | +150              | °C          |
| Operating temperature <sup>2,3</sup>                                                                   | ТА     | -40     | +105              | °C          |
| Junction temperature                                                                                   | TJ     |         | +150              | °C          |
| Electrostatic discharge:                                                                               | ESD    |         |                   |             |
| Charged Device Model (CDM), Class 4<br>Human Body Model (HBM), Class 1A<br>Machine Model (MM), Class A |        |         | 1000<br>250<br>30 | V<br>V<br>V |

<sup>1</sup> Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value. Exceeding any of the limits listed here may result in permanent damage to the device.

<sup>2</sup> In all cases, ambient operating temperature (TA) is specified relative to case temperature (Tc) and assumes TA = (Tc - 10 °C).

<sup>3</sup> Case operating temperature (Tc) refers to the temperature at the ground pad on the underside of the package.

**ESD HANDLING**: Although this device is designed to be as robust as possible, electrostatic discharge (ESD) can damage this device. This device must be protected at all times from ESD when handling or transporting. Static charges may easily produce potentials of several kilovolts on the human body or equipment, which can discharge without detection. Industry-standard ESD handling precautions should be used at all times.

#### Table 3. SKYA21051 Electrical Specifications: Thermal Data<sup>1</sup>

#### (VDD = 3.3 V, Enable = GND, TA = +25 °C, PIN = -20 dBm, Characteristic Impedance [Zo] = 50 $\Omega$ , Unless Otherwise Noted)

| Parameter                                                     | Symbol | Test Condition                                                  | Min | Тур  | Max | Units |
|---------------------------------------------------------------|--------|-----------------------------------------------------------------|-----|------|-----|-------|
| Thermal resistance                                            | θJC    |                                                                 |     | 40   |     | °C/W  |
| Channel temperature @ +85 °C reference<br>(package heat slug) |        | VDD=3.3 V, Ica = 16 mA, no RF applied, dissipated power = 53 mW |     | 87.1 |     | ٥°    |

<sup>1</sup> Performance is guaranteed only under the conditions listed in this table.

#### Table 4. SKYA21051 Electrical Specifications: 760 MHz Optimized Tuning<sup>1</sup> (See Figure 38)

#### (VDD = 3.3 V, Enable = GND, TA = +25 °C, PIN = -20 dBm, RBIAS = 15 kΩ, Characteristic Impedance [Zo] = 50 Ω, Unless Otherwise Noted)

| Parameter                                       | Symbol | ymbol Test Condition                                |          | Тур  | Max        | Units  |
|-------------------------------------------------|--------|-----------------------------------------------------|----------|------|------------|--------|
| RF Specifications                               |        |                                                     |          |      |            |        |
| Noise figure <sup>2</sup>                       | NF     | Small signal                                        |          | 1    | 1.5        | dB     |
| Small signal gain                               | S21    | Pın = −20 dBm                                       | 14       | 15.5 |            | dB     |
| Input return loss                               | S11    | Pin = −20 dBm                                       | 8.5      | 10   |            | dB     |
| Output return loss                              | IS22I  | Pın = −20 dBm                                       | 13       | 20   |            | dB     |
| Reverse isolation                               | IS121  | Piℕ = -20 dBm                                       |          | 22   |            | dB     |
| Third order input intercept point               | IIP3   | @ 760 MHz (tone spacing 1 MHz)                      | +1       | +2   |            | dBm    |
| Third order output intercept point              | 0IP3   | @ 760 MHz (tone spacing 1 MHz)                      | +12      | +17  |            | dBm    |
| 1 dB input compression point                    | IP1dB  | @ 760 MHz                                           | -8       | -6.1 |            | dBm    |
| 1 dB output compression point                   | OP1dB  | @ 760 MHz                                           | +6       | +8.9 |            | dBm    |
| DC Specifications                               |        |                                                     |          |      |            |        |
| Supply voltage                                  | Vdd    |                                                     |          | 3.3  |            | V      |
| Quiescent current                               | Idd    | Set with external resistor (Rbias = 15 k $\Omega$ ) | 10       | 13   | 16         | mA     |
| Bias current                                    | IBIAS  |                                                     |          | 200  |            | μΑ     |
| Enable voltage:<br>Gain mode<br>Power-down mode | VEN    |                                                     | 0<br>1.1 |      | 0.2<br>5.5 | V<br>V |
| Enable rise time <sup>3</sup>                   | ton    |                                                     |          |      | 500        | ns     |
| Enable fall time <sup>3</sup>                   | toff   |                                                     |          |      | 150        | ns     |

<sup>1</sup> Performance is guaranteed only under the conditions listed in this table.

 $^{2}$  Connector and board loss are de-embedded.

<sup>3</sup> Tested with a 100 kHz square wave, 1000 pF capacitance-to-ground on the ENABLE pin. Switching time can be improved by reducing the value of, or eliminating, the 1000 pF capacitor on pin 6 (component M17 in Figure 11).

| Parameter                                       | Symbol | Test Condition                                                                                                                                  | Mi       | n Typi                     | cal Max    | Units                |
|-------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------|------------|----------------------|
| RF Specifications                               |        |                                                                                                                                                 | ·        |                            |            |                      |
| Noise figure <sup>2</sup>                       | NF     | @ 700 MHz<br>@ 1200 MHz<br>@ 2100 MHz<br>@ 2700 MHz                                                                                             |          | 0.9<br>0.9<br>0.9<br>1     | 97<br>98   | dB<br>dB<br>dB<br>dB |
| Small signal gain                               | IS21I  | @ 700 MHz<br>@ 1200 MHz<br>@ 2100 MHz<br>@ 2700 MHz                                                                                             |          | 17<br>17<br>17<br>17<br>17 | .5<br>.3   | dB<br>dB<br>dB<br>dB |
| Input return loss                               | IS11I  | @ 700 MHz<br>@ 1200 MHz<br>@ 2100 MHz<br>@ 2700 MHz                                                                                             |          | 18<br>20<br>20<br>18       | )<br>)     | dB<br>dB<br>dB<br>dB |
| Output return loss                              | S22    | @ 700 MHz<br>@ 1200 MHz<br>@ 2100 MHz<br>@ 2700 MHz                                                                                             |          | 2:<br>1!<br>1!<br>2:       | 9          | dB<br>dB<br>dB<br>dB |
| Reverse isolation                               | IS12I  | @ 700 MHz<br>@ 1200 MHz<br>@ 2100 MHz<br>@ 2700 MHz                                                                                             |          | 2:<br>2:<br>2:<br>2:<br>2: | 2          | dB<br>dB<br>dB<br>dB |
| Third order input intercept point               | IIP3   | @ 700 MHz, $\Delta f = 1$ MHz,<br>PIN = -20 dBm/tone<br>@ 2700 MHz, $\Delta f = 1$ MHz,                                                         | 12       |                            |            | dBm                  |
| Third order output intercept point              | OIP3   | PIN = -20 dBm/tone       @ 700 MHz, $\Delta f = 1$ MHz,       PIN = -20 dBm/tone       @ 2700 MHz, $\Delta f = 1$ MHz,       PIN = -20 dBm/tone | 30       | ) 3:                       | 2          | dBm<br>dBm<br>dBm    |
| 1 dB input compression point                    | IP1dB  | @ 700 MHz<br>@ 2700 MHz                                                                                                                         | -1       | +                          | 1          | dBm<br>dBm           |
| 1 dB output compression point                   | OP1dB  | @ 700 MHz<br>@ 2700 MHz                                                                                                                         | +1<br>+1 |                            |            | dBm<br>dBm           |
| DC Specifications                               |        |                                                                                                                                                 |          |                            |            |                      |
| Supply voltage                                  | Vdd    |                                                                                                                                                 |          | 3.3                        |            | V                    |
| Quiescent current                               | lod    | Set with external resistor (RBIAS = $4.7 \text{ k}\Omega$ )                                                                                     |          | 45                         |            | mA                   |
| Bias current                                    | IBIAS  |                                                                                                                                                 |          |                            |            | μA                   |
| Enable voltage:<br>Gain mode<br>Power-down mode | Ven    |                                                                                                                                                 | 0<br>1.5 |                            | 0.2<br>5.5 | V<br>V               |
|                                                 |        |                                                                                                                                                 | 1        | 1                          | 1          | 1                    |
| Enable rise time <sup>3</sup>                   | ton    | @ 2700 MHz                                                                                                                                      |          | 400                        |            | ns                   |

#### Table 5. SKYA21051 Electrical Specifications: 700 to 2700 MHz Optimized Tuning<sup>1</sup> (VDD = 3.3 V, Enable = GND, TA = +25 °C, PIN = -20 dBm, Characteristic Impedance [Zo] = 50 $\Omega$ , Unless Otherwise Noted)

<sup>1</sup> Verified by characterization.

<sup>2</sup> Connector and board loss are de-embedded.

<sup>3</sup> Tested with a 100 kHz square wave, 1000 pF capacitance-to-ground on the ENABLE pin. Switching time can be improved by reducing the value of, or eliminating, the 1000 pF capacitor on pin 6 (component M17 in Figure 19).

Table 6. SKYA21051 Electrical Specifications: 3400 to 3800 MHz Optimized Tuning<sup>1</sup> (VDD = +3.3 V, ENABLE = LOW, Icq = 45 mA, Top = +25 °C, PIN = -20 dBm, Optimized for 3400 to 3800 MHz Operation, Unless Otherwise Noted)

| Parameter                          | Symbol                                              | Symbol Test Condition Min                             |                    | Typical              | Мах            | Units          |  |  |
|------------------------------------|-----------------------------------------------------|-------------------------------------------------------|--------------------|----------------------|----------------|----------------|--|--|
| RF Specifications                  |                                                     |                                                       |                    |                      |                |                |  |  |
| Noise figure                       | se figure NF @ 3400 MHz<br>@ 3600 MHz<br>@ 3800 MHz |                                                       | 1.2<br>1.25<br>1.3 |                      | dB<br>dB<br>dB |                |  |  |
| Small signal gain                  | S21                                                 | @ 3400 MHz<br>@ 3600 MHz<br>@ 3800 MHz                |                    | 16.8<br>16.7<br>16.5 |                | dB<br>dB<br>dB |  |  |
| Input return loss                  | S11                                                 | @ 3400 MHz<br>@ 3600 MHz<br>@ 3800 MHz                |                    | 24<br>30<br>30       |                | dB<br>dB<br>dB |  |  |
| Output return loss                 | IS22I                                               | @ 3400 MHz<br>@ 3600 MHz<br>@ 3800 MHz                |                    | 22<br>21<br>22       |                | dB<br>dB<br>dB |  |  |
| Reverse isolation                  | S12                                                 | @ 3400 MHz<br>@ 3600 MHz<br>@ 3800 MHz                |                    | 23<br>23<br>23       |                | dB<br>dB<br>dB |  |  |
|                                    |                                                     | @ 3400 MHz, $\Delta f = 1$ MHz,<br>PIN = -20 dBm/tone | 9                  | 11.4                 |                | dBm            |  |  |
| Third order input intercept point  | IIP3                                                | @ 3800 MHz, $\Delta f = 1$ MHz,<br>PIN = -20 dBm/tone | 8                  | 10.9                 |                | dBm            |  |  |
| <b>T</b> 1:                        | 0100                                                | @ 3400 MHz, $\Delta f = 1$ MHz,<br>PIN = -20 dBm/tone | 25                 | 28.2                 |                | dBm            |  |  |
| Third order output intercept point | OIP3                                                | @ 3800 MHz, $\Delta f = 1$ MHz,<br>PIN = -20 dBm/tone | 24                 | 27.4                 |                | dBm            |  |  |
| 1 dB input compression point       | IP1dB                                               | @ 3400 MHz<br>@ 3800 MHz                              | -3<br>-3           | -1<br>-1             |                | dBm<br>dBm     |  |  |
| 1 dB output compression point      | OP1dB                                               | @ 3400 MHz<br>@ 3800 MHz                              | 12<br>12           | 14.8<br>14.5         |                | dBm<br>dBm     |  |  |

<sup>1</sup> Verified by characterization.

#### Table 7. SKYA21051 Electrical Specifications: 5G Driver Optimized Tuning<sup>1</sup>

# (VDD = +5 V, ENABLE = LOW, ICQ = 45 mA, TOP = +25 °C, PIN = -20 dBm, Optimized for 3400 to 5000 MHz Operation, Unless Otherwise Noted)

| Parameter                          | Symbol | Test Condition Min |  | Тур  | Мах | Units |
|------------------------------------|--------|--------------------|--|------|-----|-------|
| Noise figure                       | NF     | 4400 MHz           |  | 1.4  |     | dB    |
| Small signal gain                  | S21    | 4400 MHz           |  | 14.5 |     | dB    |
| Input return loss                  | S11    | 4400 MHz           |  | -15  |     | dB    |
| Output return loss                 | S22    | 4400 MHz           |  | -15  |     | dB    |
| Isolation                          | S12    | 4400 MHz           |  | -25  |     | dB    |
| Third order output intercept point | 0IP3   | 4400 MHz           |  | 19   |     | dBm   |
| 1 dB output compression point      | 0P1dB  | 4400 MHz           |  | 16   |     | dBm   |

<sup>1</sup> Verified by characterization.

# Typical Performance Characteristics, 700 to 2700 MHz

(VDD = 3.3 V, Enable = GND, ICQ = 45 mA, TA = +25 °C, PIN = -20 dBm, Characteristic Impedance [Zo] = 50 Ω, Unless Otherwise Noted)

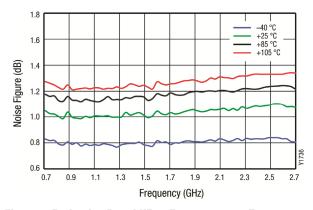
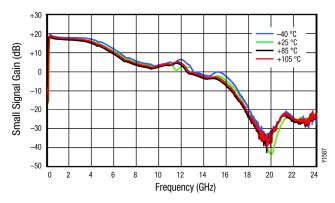




Figure 3. Evaluation Board NF vs Frequency over Temperature





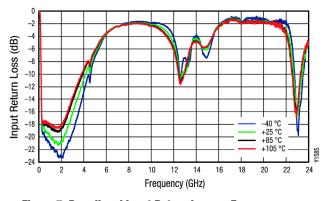



Figure 7. Broadband Input Return Loss vs Frequency over Temperature

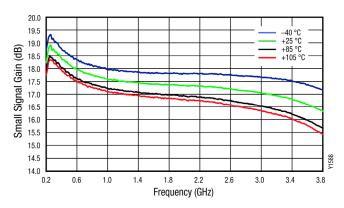



Figure 4. Narrow Band Gain vs Frequency over Temperature

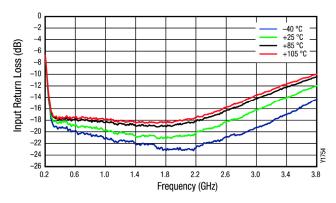



Figure 6. Narrowband Input Return Loss vs Frequency over Temperature

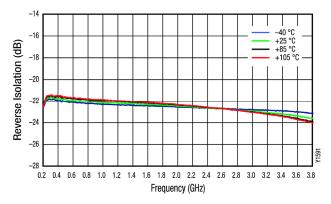



Figure 8. Narrowband Reverse Isolation vs Frequency over Temperature

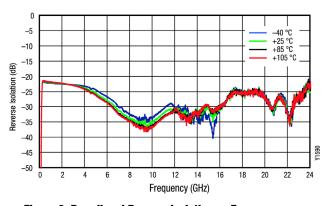



Figure 9. Broadband Reverse Isolation vs Frequency over Temperature

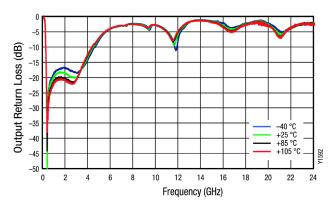



Figure 11. Broadband Output Return Loss vs Frequency over Temperature

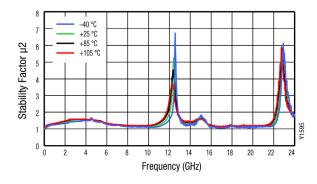



Figure 13. Stability Factor (µ2) vs Frequency over Temperature

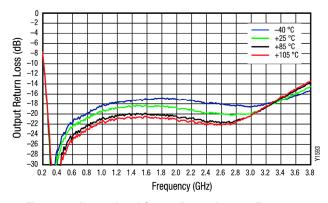



Figure 10. Narrowband Output Return Loss vs Frequency over Temperature

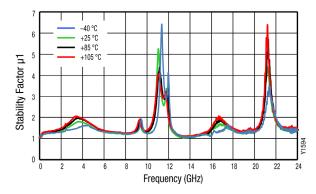



Figure 12. Stability Factor ( $\mu$ 1) vs Frequency over Temperature

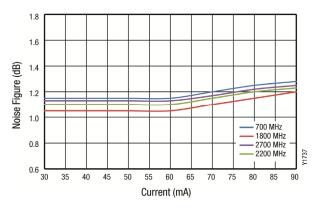



Figure 14. Evaluation Board Noise Figure vs Quiescent Current over Frequency

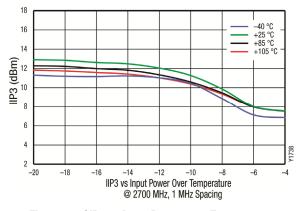



Figure 15. OIP3 vs Input Power over Temperature (@ 2700 MHz, 1 MHz Spacing)

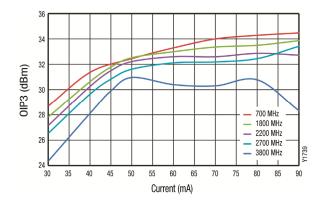



Figure 16. OIP3 vs Quiescent Current over Frequency

#### Typical Performance Characteristics, 3400 to 3800 MHz Optimized Tuning

(VDD = 3.3 V, Enable = GND, Icq = 45 mA, TA = +25 °C, PIN = -20 dBm, Characteristic Impedance [Zo] = 50  $\Omega$ , Unless Otherwise Noted)

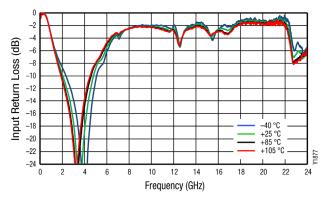



Figure 17. Broadband Input Return Loss vs Frequency over Temperature

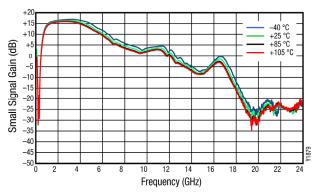



Figure 19. Broadband Gain vs Frequency over Temperature

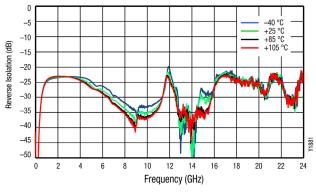



Figure 21. Broadband Reverse Isolation vs Frequency over Temperature

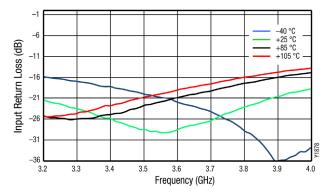



Figure 18. Narrowband Input Return Loss vs Frequency over Temperature

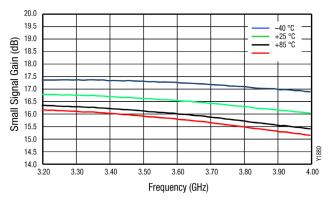



Figure 20. Narrow Band Gain vs Frequency over Temperature

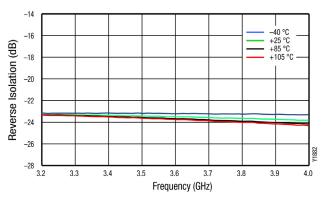



Figure 22. Narrowband Reverse Isolation vs Frequency over Temperature

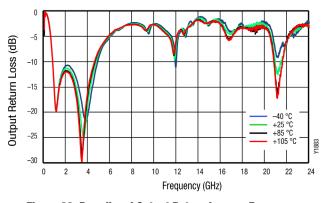



Figure 23. Broadband Output Return Loss vs Frequency over Temperature

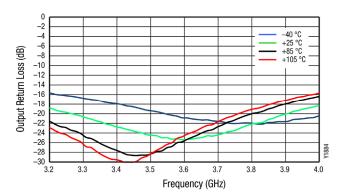



Figure 24. Narrowband Output Return Loss vs Frequency over Temperature

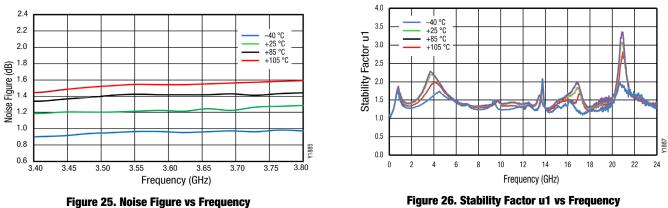



Figure 26. Stability Factor u1 vs Frequency

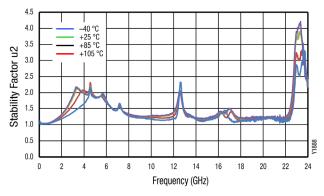



Figure 27. Stability Factor u2 vs Frequency

# **Typical Performance Characteristics, 5G Driver Optimized Tuning**

(VDD = 5 V, Enable = Low, ICQ = 45 mA, TA = +25 °C, PIN = -20 dBm, Optimized for 3400 to 5000 MHz, Unless Otherwise Noted)

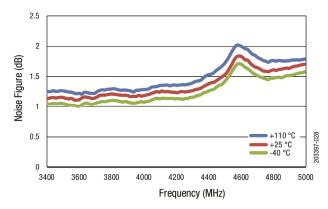



Figure 28. Evaluation Board NF vs Frequency over Temperature

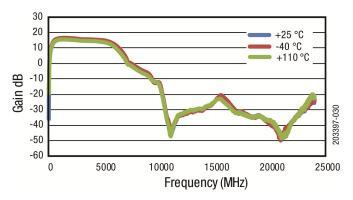
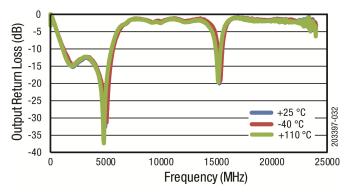
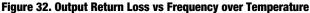





Figure 30. Gain vs Frequency over Temperature





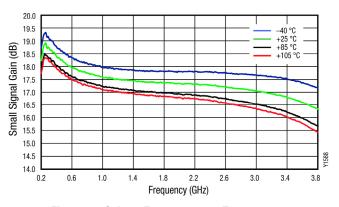



Figure 29. Gain vs Frequency over Temperature

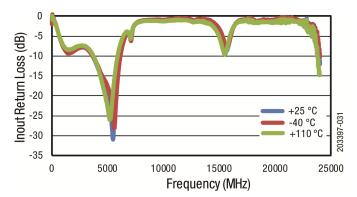



Figure 31. Input Return Loss vs Frequency over Temperature

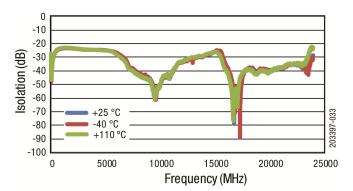



Figure 33. Isolation vs Frequency over Temperature

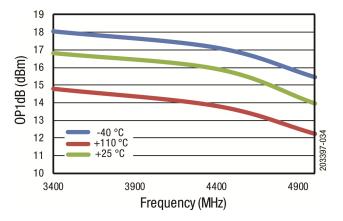



Figure 34. OP1dB vs Frequency over Temperature

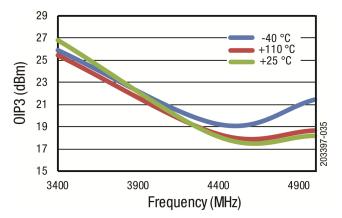



Figure 35. OIP3 vs Frequency over Temperature

#### **Evaluation Board Description**

The SKYA21051 Evaluation Board is used to test the performance of the SKYA21051 LNA.

An assembly drawing for the Evaluation Board is shown in Figure 36. The layer detail is provided in Figure 37. An Evaluation Board schematic (optimized for 760 MHz) diagram is provided in Figure 38. Table 8 provides the Bill of Materials (BOM) list for the optimized frequency band (760 MHz). An Evaluation Board schematic (optimized for 700 to 2700 MHz) diagram is provided in Figure 39. Table 9 provides the Bill of Materials (BOM) list for the optimized frequency band (700 to 2700 MHz). Table 10 provides the Bill of Materials (BOM) list for the optimized frequency band (3400 to 5000 MHz). An Evaluation Board schematic (optimized for 3400 to 3800 MHz) diagram is provided in Figure 40. Table 11 provides the Bill of Materials (BOM) list for the optimized frequency band (3400 to 3800 MHz).

#### **Package Dimensions**

The PCB layout footprint for the SKYA21051 is provided in Figure 41. Package dimensions are shown in Figure 42, and tape and reel dimensions are provided in Figure 43.

#### **Package and Handling Information**

Instructions on the shipping container label regarding exposure to moisture after the container seal is broken must be followed. Otherwise, problems related to moisture absorption may occur when the part is subjected to high temperature during solder assembly.

The SKYA21051 is rated to Moisture Sensitivity Level 1 (MSL1) at 260 °C. It can be used for lead or lead-free soldering. For additional information, refer to the Skyworks Application Note, *Solder Reflow Information*, document number 200164.

Care must be taken when attaching this product, whether it is done manually or in a production solder reflow environment. Production quantities of this product are shipped in a standard tape and reel format.

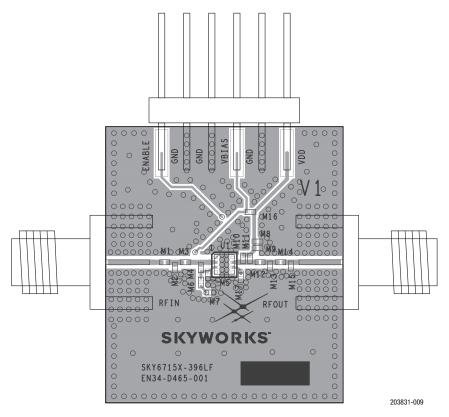
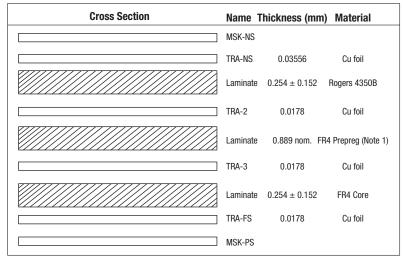




Figure 36. SKYA21051 Evaluation Board Assembly Diagram



Note 1: Adjust this thickness to meet total thickness goal.

General Notes:

Material: Rogers R04350,  $\varepsilon_T=3.66$ Layer 1 thickness: 0.254 mm Overall board thickness: 1.575 mm 50  $\Omega$  transmission line width: 0.522 mm Coplanar ground spacing: 0.394 mm Via diameter: 0.254 mm

203831-0010

Figure 37. Layer Detail Physical Characteristics

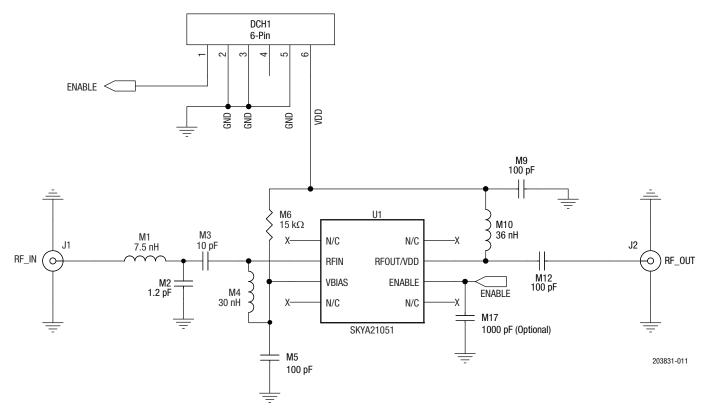



Figure 38. SKYA21051 Evaluation Board Schematic (Optimized for 760 MHz)

| Table 8. SKYA21051 | Evaluation | <b>Board Bill</b> | of Materials | (760 MHz | ) |
|--------------------|------------|-------------------|--------------|----------|---|
|--------------------|------------|-------------------|--------------|----------|---|

| Component                               | Description | Value                               | Size | Manufacturer | Mfr Part Number    |
|-----------------------------------------|-------------|-------------------------------------|------|--------------|--------------------|
| M1                                      | Inductor    | 7.5 nH                              | 0402 | muRata LQP   | CQP15MN7N5B02      |
| M2                                      | Capacitor   | 1.2 pF                              | 0402 | muRata GJM   | GJM1555C1H1R2BB01  |
| M3                                      | Capacitor   | 10 pF                               | 0402 | muRata GJM   | GJM1555C1H100GB01  |
| M4                                      | Inductor    | 30 nH                               | 0402 | Coilcraft HP | 0402HP-30NX_L      |
| M5, M9, M12                             | Capacitor   | 100 pF                              | 0402 | muRata GRM   | GRM1555C1H101JA01D |
| M6 (Rbias)                              | Resistor    | 15 k $\Omega$ (stress 1% tolerance) | 0402 | Panasonic    | ERJ-2RKF1502X      |
| M10                                     | Inductor    | 36 nH                               | 0402 | Coilcraft HP | 0402HP-36NX_L      |
| M14, M16                                | Jumper      | 0 Ω                                 | 0402 | Panasonic    | ERJ-2GE0R00X       |
| M7, M8, M11, M13, M15, M17 <sup>1</sup> | DNP         |                                     |      |              |                    |

<sup>1</sup> M17 is optional. It is only needed if the control signal is noisy.

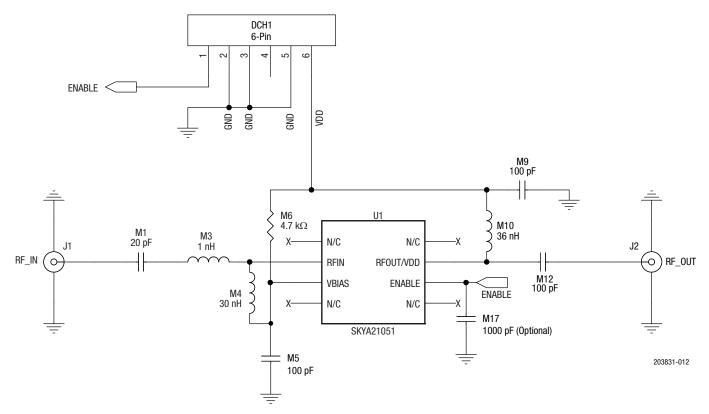



Figure 39. SKYA21051 Evaluation Board Schematic (Optimized for 700 to 2700 MHz)

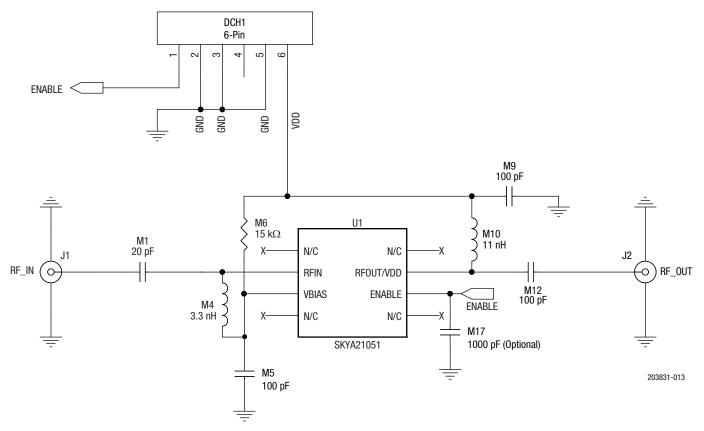
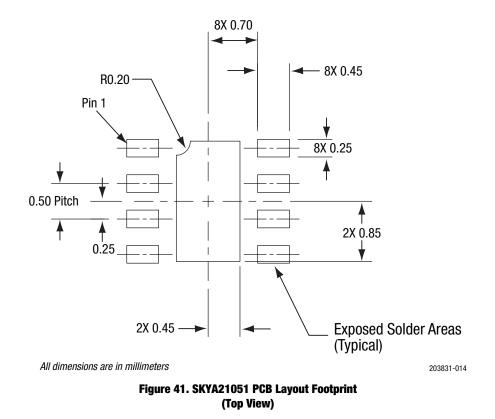
| Table 9. SKYA21051 I | Evaluation Board | I Bill of Materials | (700 to 2700 MHz) |
|----------------------|------------------|---------------------|-------------------|
|----------------------|------------------|---------------------|-------------------|

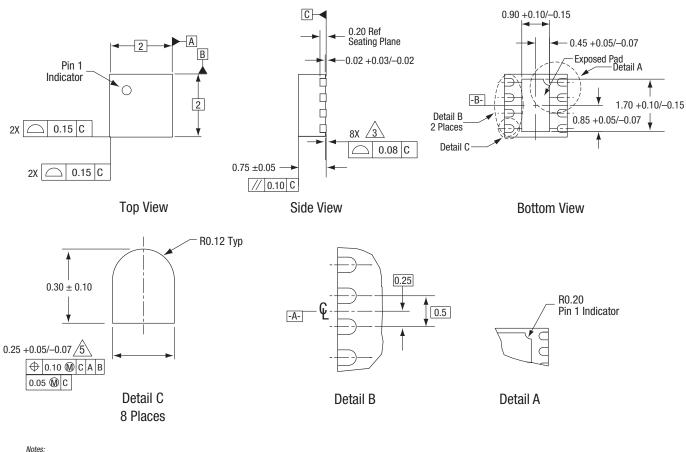
| Component                                   | Description | Value                                | Size | Manufacturer | Mfr Part Number    |
|---------------------------------------------|-------------|--------------------------------------|------|--------------|--------------------|
| M1                                          | Capacitor   | 20 pF                                | 0402 | muRata GJM   | GJM1555C1H200JB01  |
| M3                                          | Inductor    | 1 nH                                 | 0402 | Coilcraft HP | 0402HP-1N0XJL      |
| M4                                          | Inductor    | 30 nH                                | 0402 | Coilcraft HP | 0402HP-30NX_L      |
| M5, M9, M12                                 | Capacitor   | 100 pF                               | 0402 | muRata GRM   | GRM1555C1H101JA01D |
| M6 (Rbias)                                  | Resistor    | 4.7 k $\Omega$ (stress 1% tolerance) | 0402 | Panasonic    | ERJ-2RKF4701X      |
| M10                                         | Inductor    | 36 nH                                | 0402 | Coilcraft HP | 0402HP-36NX_L      |
| M14, M16                                    | Jumper      | 0 Ω                                  | 0402 | Panasonic    | ERJ-2GE0R00X       |
| M2, M7, M8, M11, M13, M15, M17 <sup>1</sup> | DNP         |                                      |      |              |                    |

<sup>1</sup> M17 is optional. It is only needed if the control signal is noisy.

| Component | Description | Value   | Size | Manufacturer | Mfr Part Number    |
|-----------|-------------|---------|------|--------------|--------------------|
| M1        | Capacitor   | 20 pF   | 402  | muRata       | GJM1555C1H200GB01  |
| M2        | Capacitor   | 0.5 pF  | 402  | muRata       | GJM1555C1HR50WB01  |
| M3        | Resistor    | 0 Ω     | 402  | NA           | NA                 |
| M4        | Resistor    | 1 kΩ    | 402  | NA           | NA                 |
| M5        | Capacitor   | 100 pF  | 402  | muRata       | GRM1555C1H101JA01  |
| M6        | Resistor    | 8.2 kΩ  | 402  | NA           | NA                 |
| M8        | Capacitor   | .01 uF  | 402  | muRata       | GRM1555R71H103KA88 |
| M9        | Capacitor   | 1000 pF | 402  | muRata       | GRM1555C1H100JZ01  |
| M10       | Inductor    | 9.1 nH  | 402  | muRata       | LQG15HS9N1J02      |
| M12       | Inductor    | 1.5 nH  | 402  | muRata       | LQP15MN1N5B02      |
| M13       | Capacitor   | 0.5 pF  | 402  | muRata       | GJM1555C1HR50WB01  |
| M14       | Capacitor   | 100 pF  | 402  | muRata       | GRM1555C1H101JA01  |
| M16       | Resistor    | 0Ω      | 402  | NA           | NA                 |
| M17       | Capacitor   | 100 pF  | 402  | muRata       | GRM1555C1H101JA01  |

Table 10. SKYA21051 Evaluation Board Bill of Materials (3400 to 5000 MHz)



Figure 40. SKYA21051 Evaluation Board Schematic (Optimized for 3400 to 3800 MHz)

| Table 11. | SKYA21051 | <b>Evaluation</b> | <b>Board Bill</b> | of Materials | (3400 to 3800 MHz) |
|-----------|-----------|-------------------|-------------------|--------------|--------------------|
|           |           |                   |                   |              |                    |

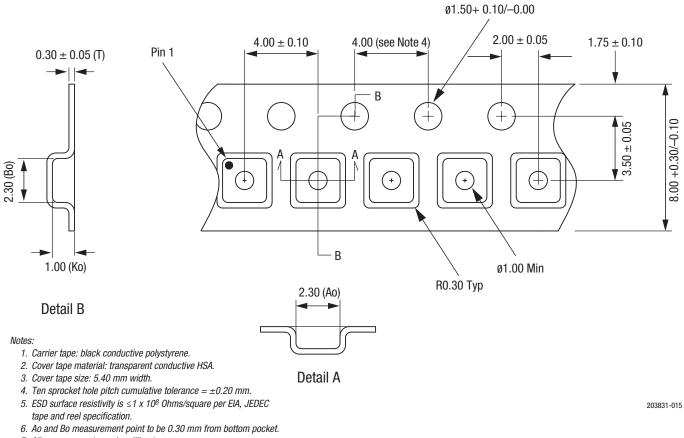
| Component                                   | Description | Value  | Size | Manufacturer | Part Number        |
|---------------------------------------------|-------------|--------|------|--------------|--------------------|
| M1                                          | Capacitor   | 20 pF  | 0402 | muRata GJM   | GJM1555C1H200JB01  |
| M4                                          | Inductor    | 3.3 nH | 0402 | Coilcraft HP | 0402HP-3N3X_L      |
| M5, M9, M12                                 | Capacitor   | 100 pF | 0402 | muRata GRM   | GRM1555C1H101JA01D |
| M6 (Rbias)                                  | Resistor    | 15 kΩ  | 0402 | Panasonic    | Any                |
| M10                                         | Inductor    | 11 nH  | 0402 | Coilcraft HP | 0402HP-11NX_L      |
| M3, M14, M16                                | Jumper      | 0Ω     | 0402 | Panasonic    | ERJ-2GE0R00X       |
| M2, M7, M8, M11, M13, M15, M17 <sup>1</sup> | DNP         |        |      |              |                    |

<sup>1</sup> M17 is optional. It is only needed if the control signal is noisy.





1. All measurements are in millimeters.


Dimensions and tolerances according to ASME Y14.5M-1994.
Coplanarity applies to the exposed heat sink ground pad as well as the terminals.

4. Plating requirement per source control drawing (SCD) 2504.

5. Dimension applies to metallized terminal and is measured between 0.15 mm and 0.30 mm from terminal tip.

203831-015

#### Figure 42. SKYA21051 Package Dimensions



7. All measurements are in millimeters.



#### **Ordering Information**

| Part Number | Product Description                           | Evaluation Board Part Number                                                                               |  |
|-------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------|--|
| SKYA21051   | 200 to 6000 MHz Broadband Low-Noise Amplifier | SKYA21051EK1 (700 to 2700 MHz low frequency range)<br>SKYA21051EK2 (3400 to 3800 MHz next frequency range) |  |

Copyright © 2016, 2018-2019 Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts. incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks Terms and Conditions of Sale.

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of stated published specifications or parameters.

Skyworks and the Skyworks symbol are trademarks or registered trademarks of Skyworks Solutions, Inc. or its subsidiaries in the United States and other countries. Third-party brands and names are for identification purposes only, and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.