Evaluation of Material and Process Contributions to BiFET Variation Using Design of Experiments

Peter J. Zampardi, Bin Li*, Cristian Cismaru, Hal Banbrook, and Andre Metzger
Skyworks Solutions, Inc., 2427 Hillcrest Drive, Newbury Park, CA 91320
peter.zampardi@skyworksinc.com, 805.480.4728, Teledyne Scientific, 1049 Camino Dos Rios, Thousand Oaks, CA 91360

Keywords: Field Effect Transistors, FET, HEMT, Threshold Voltage, Design of Experiments

Abstract
In this paper we present a method to separate the impact of feature size variation and material/gate etch variation in field effect transistors (FETs) manufactured in our BiFET process. The key to this separation is the realization that material and gate etch variation move the I_{dss} (zero bias drain current) and threshold voltage (V_p) along a line determined by I_{dss} vs. V_p^2 while feature size variations break this correlation and move the I_{dss}/V_p perpendicular to this line. This method of separation should also be applicable to understanding HEMT devices that use a power-recess.

INTRODUCTION
The understanding of FET variation is important for circuit design, modeling, and process monitoring. Most manufacturing facilities track saturation current (I_{dss}) and pinch-off voltage (V_p) for FETs, but these parameters are usually considered independent entities. For FETs, it is difficult to decouple the parameter variation due to starting material from process induced changes. We show that by exploiting the known relationship between I_{dss} and V_p, we can partially decouple material induced changes and fabrication induced changes. Using a design of experiment approach we show that material and gate etch move the I_{dss}/V_p^2 points along a line while variation in FET geometries, (channel width, gate width, and gate length) causes points to deviate from this line. We also observe interactions among these factors that can cancel or enhance the deviation from the ideal line. This shows that looking at the correlation of these parameters, rather than just the parameters themselves, is useful for better understanding and process control.

DESCRIPTION OF EXPERIMENTS AND ANALYSIS

During the modeling and characterization of FETs in our BiFET process [1], we performed a number of experiments to explore process variation of the FET parameters, in particular I_{dss} and V_p. These included various experiments on material parameters (DOE1, DOE4, and DOE5) where the channel doping and thickness were varied, DOE2 where the etch-stop and growth conditions were varied, and DOE3 where the base, emitter, and doping layer above the emitter but under the channel (buffer) were modified. Other experiments we analyzed included different etch tools, different gate metallization, forming the gate at different steps in the process, and varying many of the material parameters and growth conditions. We observed that plotting the means of I_{dss} vs. V_p^2 for all of these experiments all on approximately the same line, shown in Figure 1, where V_p is (defined as the voltage at which I_{dss}=2.5% I_{dss} is obtained).

Fig. 1 Plot of mean data from process and material growth splits.

Fig. 2 Resulting Linear Fit from Various Material Designs of Experiment (DOEs)
Fig. 3. Idss vs. Vp^2 for examples from literature. (a) is from [4] and series a is for a power device while the b series is for a low noise device. Gaussian doping profiles and simulated gate etch depth variation. Fig 2 (b) is from [5] where doping (N), active channel thickness (a), gate length (L), gate width (Z).

The variation of Idss along this line is readily included in compact models for circuit simulation [2]. The rationale for using the square of the pinch-off is following [3] and re-writing as:

\[
Idss = k \left(\frac{W + dW}{L + dL} \right) V_T^2
\]

(1)

and since V_T and V_P are correlated, we further approximate this as, and re-arrange, to get:

\[
\frac{Idss}{V_P^2} = k \left(\frac{W + dW}{L + dL} \right)
\]

(2)

Where dW and dL are changes in the gate width (W) and length (L), respectively. k is a constant (for a given technology). From our interpretation of this data, the k constant depends on both material and gate-etch (gate thickness) parameters. The second term (in brackets) should depend on process induced layout changes. From the observation of Fig. 1, we then plotting and fit data for a subset of these experiments, shown in Fig. 2, that led to the observation that material and gate formation changes only shifted data along this line, not perpendicular to it. To verify that this behavior was not unique to our BiFET process, we examined the behavior of Idss-Vp^2 from [4] and [5] as shown in Figure 3. [4] Shows that, as a result of gate etch variation, there will be a linear relationship of Idss vs. Vp^2. The plot of reference [5] data also confirmed the trend of Idss vs. Vp^2. This shows that our observations are more generally applicable.

Over large volumes of data, there are points that deviate from this line, primarily because of the bracketed term in Eqn. (2). The broadening of the data along this line (so that the data different from the expected behavior) is not currently accounted for in models and cannot be observed if only Idss is monitored. To explore the causes of this (which is normally assumed to due to gate length variations), we laid out an experiment where we varied the FET layout by DOE (gate length, gate width, and channel width – shown in Fig. 4 and defined in Table 1) and measured key FET performance parameters. The reason for selecting these particular factors they are the most likely – besides material

<table>
<thead>
<tr>
<th>Run</th>
<th>Gate Width (Wg)</th>
<th>Channel Width (CH)</th>
<th>Gate Length (L)</th>
<th>Point (x, y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>--</td>
<td>--</td>
<td>0</td>
<td>-2, -2, 0</td>
</tr>
<tr>
<td>2</td>
<td>--</td>
<td>--</td>
<td>0</td>
<td>-1, -1, 0</td>
</tr>
<tr>
<td>3</td>
<td>--</td>
<td>++</td>
<td>0</td>
<td>-2, +2, 0</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>+</td>
<td>0</td>
<td>-1, +1, 0</td>
</tr>
<tr>
<td>5</td>
<td>++</td>
<td>--</td>
<td>0</td>
<td>+2, -2, 0</td>
</tr>
<tr>
<td>6</td>
<td>+</td>
<td>-</td>
<td>0</td>
<td>+1, -1, 0</td>
</tr>
<tr>
<td>7</td>
<td>++</td>
<td>++</td>
<td>0</td>
<td>+2, +2, 0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0, 0, 0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0, -1, -1</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>+</td>
<td>-</td>
<td>0, +1, -1</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>-</td>
<td>+</td>
<td>0, -1, +1</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0, +1, +1</td>
</tr>
</tbody>
</table>

Fig. 4. Schematic cross-section showing parameters used in Table I.
and gate formation – to result in I_{dss} changes. Previous experiments had shown that shortening the gate would result in a parallel (perpendicular) shift in the I_{dss}-V_p^2 line and the same was true for gate width. In this particular process (BiFET [1]), the front gate and back gate are often tied together. The channel width is related to the effective gate width of the back gate, so it becomes important. In analyzing this data, we found that the best way to visualize the impact of these factors was to calculate the distance of the I_{dss}-V_p^2 point from this line (this is roughly equivalent to rotating the coordinate system). Each point represents the wafer average of the given layout. To perform this transformation, we first find the fit of the I_{dss} vs. V_p^2 for the data. This gives:

$$I_{dss} = 260.6V_p^2 - 3.12 \quad (3)$$

To find the distance to this line, we use the equation for the distance of a point to a line (dist):

$$\text{dist} = \frac{260.61V_{p,\text{meas}}^2 - I_{dss,\text{meas}} - 3.12}{\sqrt{260.6^2 + 1}} \quad (4)$$

The results of this transformation are shown in Fig. 5 along with the I_{dss} variation. States marked with 1 are at the 3σ limit for that parameter and 2 are at 6σ. The 6σ points were made in case the nominal points came out too close to the upper or lower limit (so we could still analyze the data). Fortunately, the nominal values were verified to be close to target. From the figure, we observed that interaction between gate width and channel width is very important in addition to the gate length (which receives most of the attention). The lowest value of I_{dss} is obtained for narrow gate width, wide channel, and longer gate. The maximum value of I_{dss} is for wide gate, narrow channel, and narrow gate. In this case, if there are observed points far from the expected I_{dss}-V_p^2 line, then it is very likely that 2 or 3 of these factors are shifted in the process. Unfortunately, this interaction means that we cannot use simple electrical measurements at PCM to separate out the contributions and account for this in our device models but does indicate parameters, other than material or gate formation, could explain anomalous I_{dss} data. Other parameters, such as transconductance, channel resistance, can also be modeled from this experiment without the need for the transformation. To understand how much of the deviation from ideal is due to these feature size variations, we applied the distance from the layout variations. Unfortunately, this interaction means that we cannot use simple electrical measurements at PCM to separate out the contributions and account for this in our device models but does indicate parameters, other than material or gate formation, could explain anomalous I_{dss} data. Other parameters, such as transconductance, channel resistance, can also be modeled from this experiment without the need for the transformation. To understand how much of the deviation from ideal is due to these feature size variations, we applied the distance from the layout variations. This doesn’t imply that the feature size variations account for the most I_{dss} variation, but for the deviation from the expected I_{dss}-V_p^2 line. The interaction of some of the material factors and feature size variation is the subject of on-going studies, keeping that in mind, we applied the same distance methodology to other experiments we described earlier and these are compared with the layout.

Fig. 5. Resulting distance from I_{dss}-V_p^2 fit line for different DOE states and the resulting I_{dss} variation by state. (a) shows the difference to the line while (b) shows the value of I_{dss}.

DOE results as shown in Fig. 6. We observe that the larger variations come of the layout DOE factors when varied beyond allowable bounds (for DOE purposes) and variations in material growth parameters are offset, but tighter than the layout variations.

Fig. 6. Comparison of the distance method applied to our layout DOE, gate formation tools, material growth DOE, and gate etch tool.
To show the applicability to HEMT processes, we plotted mean values of $I_{\text{dss}} - V_p^2$ for several different processes (indicated by P#) generations in Fig. 7. The main variation in the materials is the Schottky layer on which the gate is placed (indicated by the label Epi#). The same general behavior is observed as for the BiFET. The gate length is longer on the processes labeled Epi1 and they fall below the line as expected. Re-plotting this data as distance in Fig. 8, we can infer that there are other process differences that account for the deviation from the line. In particular, the recess to gate metal spacing is different as are the gate lengths. This highlights the possibility of using a similar experiment to understand the correlation of I_{dss} and V_p^2 for HEMTs as well.

CONCLUSIONS

We first showed that for variations in a given FET process, a plot of I_{dss} vs. V_p^2 should follow a straight line. This was verified comparing simulation and measured data from literature. We showed that this results in material or gate formation differences shift the (I_{dss}, V_p^2) point along a diagonal determined by a linear fit of I_{dss} vs. V_p^2 while variations FET lateral dimensions move the (I_{dss}, V_p^2) orthogonal to this line. To understand what layout factors caused non-ideal behavior, we performed a DOE based experiment using layout factors. To easily highlight and compare the influence of these factors, we used the distance of these points to the expected line. The interaction of these factors was also shown to be important. Finally, we used the distance method to compare material, process, and our layout DOE. Applying this method to available data on pHEMT processes also showed it can be used to evaluate if the layout variation or material/gate formation caused the deviation from the expected behavior.

ACKNOWLEDGEMENTS

The authors would like to thank Dr. Ravi Ramanathan (Skyworks) for support of this project and the Skyworks Newbury Park Wafer Fab for processing.