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Fig. 11. Measurement setup used to evaluate the capacitance variation of the
varactor due to the compression and blocking distortion.

Fig. 12. (a) Microphotograph and schematic of third-order compres-
sion/blocking/intermodulation distortion cancelled varactor circuit.
(b) Microphotograph and schematic of a single diode.

load impedance (i.e., in Fig. 11), the output power on
the 50- load impedance is used to monitor the RF voltage
across the varactor. As discussed in Section VI, the highlighted
varactor configuration in Table IV cancels all of the important
distortions, and therefore is chosen as the representative for the
compression and blocking distortion cancelled topology. The
varactor sample is implemented within Skyworks Solutions
Inc.’s GaAs technology [see schematic and microphotograph in
Fig. 12(a)] and previously showed a successful cancellation of
intermodulation distortion [21]. In this paper, the measurement
focus will be on the capacitance variation due to compression
and blocking distortions. As a counterpart for comparison, a
single diode [see Fig. 12(b)] is implemented on the same wafer
and experimentally tested as well. The implemented varactor
diodes all have exponential – relationship with the tuning
range of 9:1 over a reverse control voltage range from 0 to 15 V
[21].

A. Cancellation of Compression Distortion

To test the capacitance variation due to compression dis-
tortion, the single-tone RF power at 2 GHz is applied to the
schematic in Fig. 11. With the use of a single-tone signal,
the blocking distortion due to a jammer signal is absent, and

Fig. 13. Measured and simulated capacitance variation versus output RF power
for the single diode and third-order compression distortion cancelled topology.
DC reverse control voltage V. For the simulation, an ideal exponential
– relationship is used. pF for the single diode and
pF for the third-order compression distortion cancelled topology.
V .

therefore the compression distortion can be solely evaluated.
Fig. 13 plots the measured and simulated capacitance vari-
ation in percentage with respect to the low-power condition
average output power 2 dBm as a function of output
power. It shows that the compression distortion cancelled
topology outperforms the single diode to a large degree. For
the single diode, the measurement data match the simulation
results quite well, while the measured capacitance variation of
the compression distortion cancelled topology are typically less
than 0.1%, a level close to the measurement limitation of the
characterization system and sufficient for many RF applications
such as high- tunable resonators.

B. Cancellation of Blocking Distortion

For the test of capacitance variation due to blocking distor-
tion, a two-tone RF signal is used for the schematic shown in
Fig. 11. In this test, the tone power at is set to a relatively
low level, and therefore the blocking jammer signal at be-
comes the main contributor to the capacitance variation at .
Fig. 14 plots the measured and simulated capacitance variation
at with respect to the low-power condition as a function of
the output power at . It suggests that the measured capaci-
tance variation of the blocking distortion cancelled topology is
100 times better than that of the single diode at the large output

power levels. In Fig. 15, the capacitance variation at is plotted
versus the reverse control voltage with the jammer output power
at fixed as 20 dBm. It indicates that the blocking distortion
cancelled topology provides a capacitance variation less than
0.5% for the whole exponential – operating range. Under
such RF excitation, the blocking distortion cancelled topology
offers a larger effective tuning range ( 6.5 1 over the control
voltage range of 0.8–11 V) associated with much smaller ca-
pacitance variation than that of the single diode, a property at-
tractive for many RF applications.
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Fig. 14. Measured and simulated capacitance variation at (1.999 GHz) with
respect to the low-power condition versus the output RF power at (2 GHz) for
the single diode and third-order blocking distortion cancelled topology. Under
the low-power condition, the jammer signal at is turned off and the output
power at is kept as 2 dBm. DC reverse control voltage equals to 5 V. For the
simulation, ideal exponential – relationship is used. pF for the
single diode and pF for the third-order blocking distortion cancelled
topology. V .

Fig. 15. Measured and simulated capacitance variation at (1.999 GHz) with
respect to the low-power condition versus reverse control voltage for the single
diode and third-order blocking distortion cancelled topology. In this test, the
output RF power at 2 GHz is kept as 20 dBm. Under the low-power condi-
tion, the jammer signal at is turned off and the power available from the
source at is 2 dBm. Note that the simulation is based on the fitted – mea-
surement data and the – deviates from the exponential relation at 12.5 V.

pF for the single diode and pF for the third-order blocking
distortion cancelled topology.

VIII. CONCLUSIONS

For the first time, the fundamental mechanisms that induce
capacitance variation of semiconductor varactors under large
RF excitation have been investigated. Both compression and
blocking distortion may play a role in changing the capacitance.
Based on this information, various varactor configurations have
been proposed to cancel the third-order compression and
blocking distortion. For the experimental verification, the
varactor configuration that cancels all of the important dis-

tortions has been selected and implemented within Skyworks
Solutions Inc.’s GaAs technology. The measurements provide
experimental evidence for the predicted cancellation of the
compression and blocking distortion, yielding a measured
capacitance variation in the order of 0.1 0.5 under large
RF excitation. This result is 100 times better than that of the
conventional single diode, and therefore very attractive for the
RF applications such as high- tunable resonators. Future RF
adaptive circuitry using these proposed devices will suffer less
from detuning issues, making semiconductor-based varactor an
appropriate choice for many large-signal RF applications.
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