Investigation of electron delay in the base on noise performance in InGaP heterojunction bipolar transistors

1 Semiconductor Physics Institute of Center for Physical Sciences and Technology, A. Gostauto g. 11, 01108 Vilnius, Lithuania
2 CEDIC, Dresden University of Technology, 01062 Dresden, Germany
3 Skyworks Solutions Inc., 2427 W. Hillcrest Drive, Newbury Park, CA 91320, USA
4 University of California, San Diego, ECE, La Jolla, CA 92093-0407, USA

Received 8 August 2010, revised 4 September 2010, accepted 6 September 2010
Published online 10 September 2010

Keywords InGaP, III–V semiconductors, semiconductor devices, transistors, electronic noise

** Corresponding author: e-mail simukovic@pfi.lt, Phone: +370 52 618 101, Fax: +370 52 627 123
** e-mail sakalas@iee.et.tu-dresden.de

1 Introduction

Modern InGaP/GaAs heterojunction bipolar transistors (HBT) demonstrate excellent microwave and high-speed performance due to high carrier mobility and bandgap engineering. They have found a niche in wireless and optical electronics in spite of higher wafer fabrication costs and lower integration level compared to Si/SiGe technology [1, 2]. State of the art III–V HBTs have a cut-off frequency (f_T) exceeding 600 GHz [3]. In a thin base ($w_B < 90$ nm) HBT, the signal delay takes place mainly in the base and the base/collector (B/C) region where the electron transport is also quasi-ballistic [4, 5]. Thus f_T is expected to be higher for a thinner base width HBT. However, the base resistance (R_B) increases as w_B shrinks resulting in compromised power gain and noise performance. Therefore a higher base doping is required to maintain low sheet resistance.

In III–V HBTs a space charge accumulated in the B/C region can introduce additional signal delay at high current densities [6], resulting in a decrease of f_T and degraded noise performance [7]. In a compound collector HBT (CCHBT) [8], an additional heavily δ-doped layer in the collector region near to the base helps to get rid of the undesirable charge accumulation at high injection currents [9]. Therefore an improved noise performance in CCHBTs is expected.

It is well known that the minimal noise figure (NF_{min}) of HBTs is reduced due to the cross-correlation of base and collector current shot noise. The cross-correlation is described via a delay time approach. This might not be applicable to the thin base HBTs because of the quasi-ballistic electron transport.
This Letter demonstrates that the cross-correlation of the shot noise sources in thin base HBTs in terms of noise delay time [7] does not adequately describe the noise performance of InGaP-based HBTs. Investigation of different base width devices reveals the impact of carrier delay in the base on RF and noise behaviour. In addition, investigating similar HBTs with a compound collector enables the impact of accumulated collector charge on noise and RF behaviour to be determined.

2 Devices and measurement setup

The investigated InGaP/GaAs HBTs have different base doping levels N_A (4.5×10^{19} cm$^{-3}$) and base widths $w_B = 50$ nm, 70 nm, 90 nm and are compared with an InGaP CCHBT ($N_A = 4 \times 10^{19}$ cm$^{-3}$, $w_B = 90$ nm) (Fig. in abstract). Noise and s-parameters were measured in the 2–26 GHz frequency range with a Maury ATS tuner system, Agilent PSA E4448A, PNA 8364B and Suss Microtech probe station PM8.

3 Results and discussion

The compact model (CM) HICUM/L2v2.23 [10] (HICUM = high-current model) was used for the verification of DC (Fig. 1) and RF standard characteristics (Fig. 2). The frequency performance of InGaP CCHBTs was better than that of conventional InGaP HBT with the same base layer thickness (cf. Fig. 2). For conventional InGaP HBTs, the cut-off frequency slightly increases with the base width decrease (Fig. 2, circles, diamonds, and crosses).

The electron emitter–collector transit time τ_{E-C} is determined from

$$\tau_{E-C} = \frac{1}{2\pi f_T}$$

(1)

Figure 1 (online colour at: www.pss-rapid.com) Forward Gummel plot for InGaP/GaAs HBTs, symbols: measured data, line: HICUM, $V_{BC} = 0$. Figure 2 (online colour at: www.pss-rapid.com) Cut-off frequencies f_T vs. collector current densities for InGaP HBT with different base widths and for CCHBT. Symbols are measured data, lines are HICUM.

Figure 3 (online colour at: www.pss-rapid.com) Extrapolated emitter–collector transit time τ_{E-C} vs. base width for the investigated InGaP HBTs at $V_{CE} = 1.5$ V.

Figure 4 (online colour at: www.pss-rapid.com) Minimum noise figure NF_{min} vs. collector current density J_C for the investigated InGaP HBTs.
The dependence of τ_{E-C} on the base width and doping is shown in Fig. 3 and a weak increase with base doping is observed (circle and square). Ignoring the base doping contribution, a linear extrapolation yields $\tau_{E-C} - \tau_0$ where τ_0 is base transit time. Assuming the base is the only variable (emitter and collector doping and thicknesses are the same), the values of τ_0 can be estimated: $\tau_0 \sim 1.1 \text{ ps}$ for HBTs with $w_B = 90 \text{ nm}$ and $\tau_0 \sim 0.6 \text{ ps}$ for HBTs with $w_B = 50 \text{ nm}$.

The measured data in Fig. 3 confirm the theoretically expected linear dependence of the measured emitter–collector transit time on the base width (Fig. 3) for quasiballistic electron transport. The electrons injected into the base through the E/B heterojunction acquire additional kinetic energy due to the conduction band offset.

However, in the B/C space charge region the electrons acquire additional energy to be transferred from the Γ valley to the L or X valleys where the effective mass is higher and the drift velocity is lower. This inter-valley transfer is in part responsible for the electron jam. The space charge of the jammed electrons introduces additional signal delay. If a δ-doped layer is used (CCHBT) a significant decrease of the emitter–collector transit time by $\sim 0.9 \text{ ps}$ is obtained (Fig. 3, star). The accumulated charge effectively recombines at the δ-doped layer in the B/C region.

A surprisingly small dependence of NF_{min} versus w_B was obtained according to Fig. 4. At lower $J_C < 0.1 \text{ mA/} \mu \text{m}^2$, the difference of NF_{min} is due to different base resistances, but curves for different w_B and N_A converge as J_C increases. The HBT with $w_B = 50 \text{ nm}$ shows only a slight improvement in f_T and NF_{min} while the short base supports higher current gain which usually implies a lower NF_{min}. If τ_B were the main contributor to τ_{E-C}, the NF_{min} would have been strongly dependent on w_B. The experimental results show that the base transit time is not the main cause for the noise performance in III–V HBTs.

The InGaP CCHBT demonstrates a lower NF_{min} compared to the conventional HBT of similar base width. The charges accumulated in the B/C and collector regions establish an additional delay and reduce NF_{min}. The composite collector improves f_T and NF_{min} because of the partial washout of the jammed electrons.

We assume that Coulomb shot noise blockade by the accumulated charge in the collector region is a significant factor for reduction of collector current shot noise [11]. The dotted curve in Fig. 5 illustrates the effect of the Fano factor (γ) that enters the expression for the spectral density of collector current noise power,

$$S_C = 2 \cdot q \cdot I_C \cdot \gamma,$$

where q is an elementary charge, I_C is the collector current. HICUM with implemented correlated noise model [12] and with introduced Fano factor ($\gamma = 0.34$) shows very good agreement with experimental data (Fig. 5).

4 Conclusions The HICUM/L2v2.23 model with implemented cross-correlation together with an introduced Fano factor yields very good agreement with measured noise data in a large frequency and bias range. Coulomb blockade of shot noise is assumed to be among the main factors reducing and shaping NF_{min} in InGaP HBTs.

Acknowledgement P. Sakalas and M. Schröter are thankful to DFG (German Research Foundation) for financial support.

References