A Measurement Technique Used to Determine the 3 dB Modulation Bandwidth of Skyworks PS094-315 Phase Shifter

Introduction

Under the control of an external signal, a phase shifter is typically used to shift the phase of a high frequency signal. An analog phase shifter may also be used as a phase modulator, in which case the external control signal is known as the modulating baseband signal.

A parameter of interest is the maximum baseband modulating frequency, which is typically defined as the frequency at which modulation sensitivity decreases by 3 dB. The “bandwidth” of an electronic component is defined as "The range of frequencies within which performance, with respect to some characteristic, falls within specific limits."[1]

In this case, the modulation bandwidth is defined as the range of frequencies in which modulation sensitivity is within 3 dB of the peak value. In basic electric circuit theory, the bandwidth represents the distance between the two points in the frequency domain where the signal is 1/√2 of the maximum signal amplitude (half power). As an example, the 3 dB bandwidth of a low pass filter is depicted in Figure 1.

This Application Note describes a measurement technique used to determine the 3 dB modulation bandwidth of the Skyworks PS094-315 voltage variable phase shifter, operating in the 700 to 1220 MHz frequency band. For additional information about the PS094-315, refer to the device Data Sheet (document # 200240).

Modulation Bandwidth Measurement

Modulation bandwidth is a measure of control port frequency response. It can be measured using the test setup shown in Figure 2.

The procedure is to phase modulate the RF signal applied to the phase shifter with a lower frequency sine wave, then use a phase demodulator to recover the original modulating signal. As the modulation frequency is increased and the amplitude of the high frequency RF signal is held constant, the 3 dB modulation bandwidth can be determined as the modulating frequency at which the recovered modulating baseband signal is reduced in amplitude by 3 dB from its peak value.

In this case, the phase demodulator circuit is a double-balanced passive mixer. It is selected so it has a wider baseband bandwidth than that of the phase shifter.

Test Setup

A phase demodulator is constructed by using a power splitter and mixer. The frequency of the modulating signal is varied, while keeping its amplitude constant, starting from a frequency very close to 0 Hz until the oscilloscope display drops by 3 dB, or to 0.707 of its low frequency value. This frequency is recorded as the 3 dB modulation bandwidth.

![Figure 1. Example of The 3 dB Bandwidth of a Low-Pass Filter](image-url)
The RF signal generator provides a high frequency continuous
wave (CW) signal that is divided into two in-phase, equal-
amplitude signals by the power splitter. One of these signals is
phase modulated by the PS094-315 phase shifter. The other
signal is the high frequency reference signal for the mixer.

The amplitude of the output signal from the mixer is proportional
to the relative phase of the reference signal and the phase-
modulated output signal from the phase shifter. The output signal
from the mixer is sent to an oscilloscope through a low-pass filter
to suppress higher frequency harmonics generated by the mixer.

A function generator provides the modulation signal that is applied
to the phase shifter control voltage port. The amplitude of the
output signal of the function generator was held constant by
adjusting the voltage amplitude as the frequency of its output
signal was changed. The line stretcher adjusts the phase of the
high frequency reference signal to maximize the amplitude of the
recovered modulating signal, as measured by the oscilloscope.
The 3 dB pads are added to improve the RF match at the mixer.

Measurement Test Conditions

Measurements were performed using the test set up shown in
Figure 2 and equipment listed in Table 1. The ambient
temperature was +25 °C. The control port decoupling networks
(10 pF capacitors) were removed from the standard Skyworks
PS094-315 Evaluation Board (refer to the PS094-315 Data Sheet
for the schematic).

The modulation signal was a sine wave with an amplitude of 9 V
peak-to-peak. The carrier RF frequency was 940 MHz. The carrier
frequency output power from the signal generator was
+11.5 dBm.

Table 1. Test Equipment

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manufacturer</th>
<th>Part/Model No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF signal generator</td>
<td>Rohde Schwarz</td>
<td>SME03</td>
</tr>
<tr>
<td>Function generator</td>
<td>Agilent</td>
<td>81150A</td>
</tr>
<tr>
<td>Power splitter</td>
<td>MiniCircuits</td>
<td>ZFSC-2-2</td>
</tr>
<tr>
<td>Line stretcher</td>
<td>Arra</td>
<td>DN2448A</td>
</tr>
<tr>
<td>Mixer</td>
<td>MiniCircuits</td>
<td>ZFM-2000</td>
</tr>
<tr>
<td>Oscilloscope</td>
<td>LeCroy</td>
<td>44XS</td>
</tr>
</tbody>
</table>
Measurement Procedure

1. Apply the 9 V peak-to-peak sine wave with a 100 kHz modulation signal to the phase shifter VCONTROL pin. Observe this signal on an oscilloscope to confirm its frequency and amplitude.

2. Set the RF signal generator to 940 MHz with output power equal to +11.5 dBm.

3. Adjust the line stretcher to maximize the voltage at the output of the low-pass filter. The response is shown in Figure 4.

4. Record the peak-to-peak voltage at the low-pass filter output.

5. Incrementally increase the modulation signal frequency until the voltage measured at the output of the low-pass filter is 0.707 of its value at 100 kHz as recorded in step 4.

It may be necessary to adjust the modulating signal amplitude to keep its magnitude constant at 9 V peak-to-peak while increasing its frequency.

The frequency at which the output voltage as measured at the output of the low-pass filter is reduced to 0.707 of its peak value; this is the upper bound of its modulation bandwidth. Since the lower bound of the modulation bandwidth is 0 Hz, the upper bound frequency is also the modulation bandwidth.

The response is shown in Figure 5. All of the test results are plotted in Figure 6.
Conclusions

The 3 dB modulation bandwidth is determined by phase modulating an input RF signal with a lower frequency sine wave, then using a phase demodulator to recover the original modulation.

The 3 dB modulation bandwidth of the PS094-315 phase shifter was determined to be 5900 kHz at an RF frequency of 940 MHz using the technique described in this Application Note. This methodology may also be used to measure the modulation bandwidth of other analog phase shifters.

References

APPLICATION NOTE • PHASE SHIFTER 3 DB MODULATION BANDWIDTH

Copyright © 2011 Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. (“Skyworks”) products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks Terms and Conditions of Sale.

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of stated published specifications or parameters.

Skyworks, the Skyworks symbol, and “Breakthrough Simplicity” are trademarks or registered trademarks of Skyworks Solutions, Inc., in the United States and other countries. Third-party brands and names are for identification purposes only, and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.