DATA SHEET

SKY65605-21: BDS/GPS/GNSS Low-Noise Amplifier

Applications
- BDS/GPS/GNSS radio receivers
- Global Navigation Satellite Systems (GLONASS)
- Smartphones
- Tablet/laptop PCs
- Personal navigation devices

Features
- Small signal gain: 19 dB typical
- High in-band IIP3: -5 dBm
- Low noise figure: 0.6 dB typical
- High IP1dB: -14.5 dBm
- Low current consumption: 3.6 mA
- Output impedance internally matched to 50 Ω
- Single DC supply: 1.8 to 2.85 V
- Minimal number of external components required
- Ultra-small QFN (6-pin, 0.7 x 1.1 mm) package (MSL1, 260 °C per JEDEC J-STD-020)

Skyworks Green™ products are compliant with all applicable legislation and are halogen-free. For additional information, refer to Skyworks Definition of Green™, document number SQ04–0074.

Description
The SKY65605-21 is a Microwave Monolithic Integrated Circuit (MMIC) front-end low-noise amplifier (LNA) designed for BeiDou Satellite Navigation System/Global Positioning System/Global Navigation Satellite System (BDS/GPS/GNSS) receiver applications. The device provides high linearity, excellent gain, a high 1 dB input compression point (IP1dB), and a superior noise figure (NF).

The SKY65605-21 is optimized to operate from 1.559 to 1.606 GHz, which makes it ideal for BDS/GPS/GNSS radio receiver applications.

The SKY65605-21 is fabricated using advanced SiGe BiCMOS technology. The LNA uses surface-mount technology (SMT) in the form of a 0.7 x 1.1 mm Quad Flat No-Lead (QFN) package, which allows for a highly manufacturable and low-cost solution.

A functional block diagram is shown in Figure 1. The pin configuration and package are shown in Figure 2. Signal pin assignments and functional pin descriptions are provided in Table 1.
Table 1. SKY65605-21 Signal Descriptions

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>Description</th>
<th>Pin</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>Ground</td>
<td>4</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>2</td>
<td>VCC</td>
<td>Source voltage</td>
<td>5</td>
<td>RF_IN</td>
<td>RF input</td>
</tr>
<tr>
<td>3</td>
<td>RF_OUT</td>
<td>RF output</td>
<td>6</td>
<td>VEN</td>
<td>LNA enable</td>
</tr>
</tbody>
</table>

Technical Description

Power Shutdown

The VEN signal (pin 6) enables or disables the LNA DC power. A logic high signal powers on the LNA and a logic low signal powers off the device.

Electrical and Mechanical Specifications

The absolute maximum ratings of the SKY65605-21 are provided in Table 2. The recommended operating conditions are specified in Table 3 and electrical specifications are provided in Tables 4 and 5.

Table 2. SKY65605-21 Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF input power</td>
<td>P_IN</td>
<td></td>
<td>+10</td>
<td>dBm</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>V_CC</td>
<td>0</td>
<td>3.1</td>
<td>V</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_STG</td>
<td>-55</td>
<td>+125</td>
<td>°C</td>
</tr>
<tr>
<td>Junction temperature</td>
<td>T_J</td>
<td></td>
<td>+150</td>
<td>°C</td>
</tr>
<tr>
<td>Case operating temperature</td>
<td>T_C</td>
<td>-40</td>
<td>+85</td>
<td>°C</td>
</tr>
</tbody>
</table>

1 Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value. Exceeding any of the limits listed here may result in permanent damage to the device.

ESD HANDLING: Although this device is designed to be as robust as possible, electrostatic discharge (ESD) can damage this device. This device must be protected at all times from ESD when handling or transporting. Static charges may easily produce potentials of several kilovolts on the human body or equipment, which can discharge without detection. Industry-standard ESD handling precautions should be used at all times.

Table 3. SKY65605-21 Recommended Operating Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency range</td>
<td>f</td>
<td>1559</td>
<td>1575</td>
<td>1606</td>
<td>MHz</td>
</tr>
<tr>
<td>Supply voltage (measured at terminals of the Evaluation Board)</td>
<td>V_CC</td>
<td>1.50</td>
<td>1.80</td>
<td>2.85</td>
<td>V</td>
</tr>
<tr>
<td>LNA enable:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enable (high)</td>
<td>LNA_ENABLED</td>
<td>1.5</td>
<td>V_CC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disable (low)</td>
<td>LNADISABLE</td>
<td>0</td>
<td>0.3</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>
Table 4. SKY65605-21 Electrical Specifications\(^1\)
(VCC = 2.85 V, VEN = 1.5 V, f = 1575 MHz, TC= +25 °C, Unless Otherwise Noted)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small signal gain</td>
<td></td>
<td></td>
<td>17</td>
<td>19</td>
<td>21</td>
<td>dB</td>
</tr>
<tr>
<td>1 dB input compression point</td>
<td>IP1dB</td>
<td>P1 = -30 dBm</td>
<td>-14.5</td>
<td>dBm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noise figure</td>
<td>NF</td>
<td></td>
<td>0.6(^2)</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In-band third order input intercept point</td>
<td>IIP3</td>
<td>f1 = 1575 MHz, P1 = -30 dBm, f2 = 1574 MHz, P2 = -30 dBm</td>
<td>-5</td>
<td>dBm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Out-of-band third order input intercept point</td>
<td>OOB-IIP3</td>
<td>f1 = 1713 MHz, P1 = -20 dBm, f2 = 1851 MHz, P2 = -20 dBm</td>
<td>-2</td>
<td>dBm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse isolation</td>
<td>IS12i</td>
<td>P1 = -30 dBm</td>
<td>37</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input return loss</td>
<td>IS11i</td>
<td>P1 = -30 dBm</td>
<td>7.5</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output return loss</td>
<td>IS22l</td>
<td>P1 = -30 dBm</td>
<td>10</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply current</td>
<td>ICC</td>
<td></td>
<td>3.5</td>
<td>4.5</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Shutdown current</td>
<td>ILEAK</td>
<td></td>
<td>0.1</td>
<td>1.0</td>
<td>μA</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) Performance is guaranteed only under the conditions listed in this table.
\(^2\) 0.1 dB has been de-embedded for input connector and trace loss.

Table 5. SKY65605-21 Electrical Specifications\(^1\)
(VCC = 1.8 V, VEN = 1.5 V, f = 1575 MHz, TC= +25 °C, Unless Otherwise Noted)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small signal gain</td>
<td></td>
<td></td>
<td>17</td>
<td>18.5</td>
<td>20.5</td>
<td>dB</td>
</tr>
<tr>
<td>1 dB input compression point</td>
<td>IP1dB</td>
<td>f = 1575.0 MHz</td>
<td>-16 (Note 2)</td>
<td>dBm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noise figure</td>
<td>NF</td>
<td></td>
<td>0.65</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In-band third order input intercept point</td>
<td>IIP3</td>
<td>f1 = 1575 MHz, P1 = -30 dBm, f2 = 1574 MHz, P2 = -30 dBm</td>
<td>-7</td>
<td>dBm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Out-of-band third order input intercept point</td>
<td>OOB-IIP3</td>
<td>f1 = 1713 MHz, P1 = -20 dBm, f2 = 1851 MHz, P2 = -20 dBm</td>
<td>-5</td>
<td>dBm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse isolation</td>
<td>IS12i</td>
<td>P1 = -30 dBm</td>
<td>37</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input return loss</td>
<td>IS11i</td>
<td>P1 = -30 dBm</td>
<td>7</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output return loss</td>
<td>IS22l</td>
<td>P1 = -30 dBm</td>
<td>10</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply current</td>
<td>ICC</td>
<td></td>
<td>3.3</td>
<td>4.5</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Shutdown current</td>
<td>ILEAK</td>
<td></td>
<td>0.1</td>
<td>1.0</td>
<td>μA</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) Performance is guaranteed only under the conditions listed in this table.
\(^2\) 0.1 dB has been de-embedded for input connector and trace loss.
Evaluation Board Description
The SKY65605-21 Evaluation Board is used to test the
performance of the SKY65605-21 LNA. Figure 3 shows the
Evaluation Board schematic, and Table 6 lists the Bill of Materials
(BOM) for the SKY65605-21. Figure 4 shows the Evaluation Board
assembly drawing.

Package Dimensions
Typical part markings are shown in Figure 5. Package dimensions
for the SKY65605-21 are shown in Figure 6, and tape and reel
dimensions are provided in Figure 7.

Table 6. SKY65605-21 Bill of Materials for the Evaluation Board1,2

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Value</th>
<th>Size</th>
<th>Manufacturer</th>
<th>Mfr Part Number</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>3.9 pF</td>
<td>0402</td>
<td>Murata</td>
<td>GRM1555C1E3R9CA01D</td>
<td>Capacitor</td>
</tr>
<tr>
<td>C2 (optional)</td>
<td>10 pF</td>
<td></td>
<td>Murata</td>
<td>GRM1555C1H101JA01D</td>
<td>Capacitor</td>
</tr>
<tr>
<td>L1</td>
<td>6.2 nH</td>
<td>0402</td>
<td>Murata</td>
<td>LQW15AN6N2C00D</td>
<td>Wire-wound HiQ inductor</td>
</tr>
</tbody>
</table>

1 The C1 and C2 capacitors can use a 0201 size as an alternative.
2 The C2 capacitor is optional if there is no DC present at the RF input.

Package and Handling Information
Instructions on the shipping container label regarding exposure to
moisture after the container seal is broken must be followed.
Otherwise, problems related to moisture absorption may occur
when the part is subjected to high temperature during solder
assembly.
The SKY65605-21 is rated to Moisture Sensitivity Level 1 (MSL1)
at 260 °C. It can be used for lead or lead-free soldering. For
additional information, refer to the Skyworks Application Note,
Solder Reflow Information, document number 200164.
Care must be taken when attaching this product, whether it is
done manually or in a production solder reflow environment.
Production quantities of this product are shipped in a standard
tape and reel format.
Figure 4. SKY65605-21 Evaluation Board Assembly Drawing

Figure 5. SKY65605-21 Typical Part Marking
Figure 6. SKY65605-21 Package Dimensions

Notes:
1. Plating requirement per source control drawing (SCD) 2504.
3. Unless otherwise specified, all measurements are in millimeters.
4. Tolerances on decimals: Tolerances on angles:
 \[x = \pm 0.05 \]
 \[\Delta x = \pm 0.025 \]
 \[\pm 1/2' \]

Figure 7. SKY65605-21 Tape and Reel Dimensions

Notes:
1. Measured from centerline of sprocket hole to centerline of pocket.
2. Cumulative tolerance of 10 sprocket holes is ± 0.20.
3. Measured from centerline of sprocket hole to centerline of pocket.
4. Other material available.
5. Unless otherwise stated, all dimensions are in millimeters.
Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Product Description</th>
<th>Evaluation Board Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKY65605-21</td>
<td>BDS/GPS/GNSS Low-Noise Amplifier</td>
<td>65605-21-EVB</td>
</tr>
</tbody>
</table>