

DATA SHEET

OLC249: Radiation-Tolerant Phototransistor Non-Hermetic Surface-Mount Optocoupler

Features

- Non-Hermetic SMT package
- 1000 VDc electrical isolation
- High CTR
- Small package size
- Radiation tolerant

Description

The OLC249 can be used for large satellite constellation applications that require optical isolation in radiation environments such as gamma, neutron, and proton radiation with a high CTR and low saturation VCE. Each optocoupler consists of an LED and N-P-N silicon phototransistor that is electrically isolated, but optically coupled inside a non-hermetic six-pin Leadless Chip Carrier (LCC) package.

Electrical parameters are similar to the JEDEC registered 4N49 optocoupler, but with a higher CTR and better CTR degradation characteristics due to radiation exposure.

The hermetic surface mount variant of the OLC249 optocoupler is available as the OLS249, both in a non-screened catalog version as well as a high-reliability screened version.

The OLC249 is designed for a low LED operating current while providing excellent radiation tolerance margins.

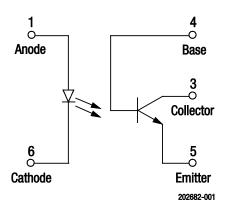


Figure 1. OLC249 Block Diagram

A functional block diagram of the OLC249 is shown in Figure 1. The absolute maximum ratings of the OLC249 are provided in Table 1. Electrical specifications are provided in Table 2.

Typical performance characteristics of the OLC249 are illustrated in Figures 2 through 4. A typical switching test circuit is shown in Figure 5 and package dimensions for the OLC249 are provided in Figure 6.

Table 1. OLC249 Absolute Maximum Ratings¹

Parameter	Symbol	Minimum	Maximum	Units			
Coupled							
Input to output isolation voltage ²	VDC	-1000	+1000	V			
Storage temperature range	Тята	-65	+150	٥°			
Operating temperature range	Та	-55	+125	٥°			
Mounting temperature range (10 seconds maximum)	Тмтд		+240	٥°			
Input Diode							
Average input current ³	lod		40	mA			
Peak forward current ⁴	lF		1	A			
Reverse voltage	VR		2	V			
Output Detector							
Collector to emitter voltage	VCE		40	V			
Emitter to base voltage	Veb		7	V			
Collector to base voltage	Vcb		45	V			
Continuous collector current	lcc		50	mA			
Power dissipation ⁵	Po		300	mW			

1 Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to the device with only one parameter set at the limit and all other parameters set at or below their nominal value. Exceeding any of the limits listed here may result in permanent damage to the device.

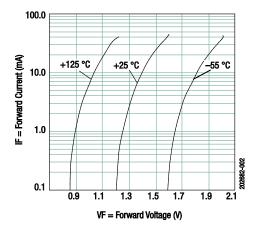
 2 Measured between pins 1, 2, and 6 shorted together, and pins 3, 4, and 5 shorted together. TA = 25°C and duration = 1 s.

 3 Derate linearly to 125 °C free-air temperature at 0.67 mA/°C above 65 °C.

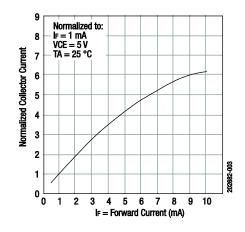
 4 For pulse width \leq 1 $\mu s,$ pulse repetition rate \leq 300 pps.

⁵ Derate linearly to 125 °C free-air temperature at 3.0 mW/°C above 25 °C.

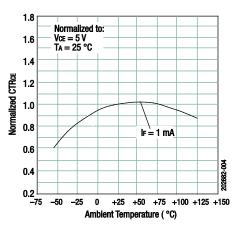
ESD HANDLING: Although this device is designed to be as robust as possible, electrostatic discharge (ESD) can damage this device. This device must be protected at all times from ESD when handling or transporting. Static charges may easily produce potentials of several kilovolts on the human body or equipment, which can discharge without detection. Industry-standard ESD handling precautions should be used at all times.

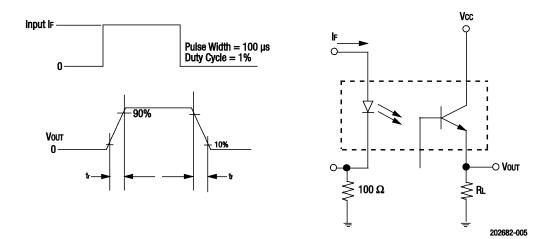

Table 2. OLC249 Electrical Specifications¹ ($T_A = 25 \ ^{\circ}C$, Unless Otherwise Noted)

Parameter	Symbol	Test Condition	Minimum	Maximum	Units
On-state:					
Collector current	IC_ON	$ I_{F} = 1 \text{ mA, Vce} = 5 \text{ V} \\ I_{F} = +2 \text{ mA, Vce} = +5 \text{ V, Ta} = -55 \text{ °C} \\ I_{F} = 2 \text{ mA, Vce} = 5 \text{ V, Ta} = 125 \text{ °C} \\ \end{cases} $	2.0 +2.8 2.0	12.0	mA mA mA
Collector base current	ICB_ON	$I_F = 10 \text{ mA}, V_{CB} = 5 \text{ V}$	30		μA
Saturation voltage	VCE_SAT	$I_F = 2 \text{ mA}, \text{ Ic} = 2 \text{ mA}$		0.3	V
Breakdown voltage:					
Collector to emitter Collector to base Emitter to base	BVceo BVcbo BVebo	Ice = 1 mA Icb = 100 μA Ieb = 100 μA	40 45 7		V
Off-state leakage current:					
Collector to emitter	ICE_OFF			100 100	nA μA
Collector to base	ICB_OFF	$V_{CB} = 20 V$		10	nA
Input:					
Forward voltage	VF	$I_{F} = +10.0 \text{ mA}, T_{A} = -55 \text{ °C}$ $I_{F} = 10.0 \text{ mA}$ $I_{F} = 10.0 \text{ mA}, T_{A} = 125 \text{ °C}$	+1.4 1.2 1.1	+2.0 1.8 1.7	V V V
Reverse current	IR	$V_R = 2 V$		100	μA
Output resistance ²	ri_o	$V_{I-O} = \pm 1000 V_{DC}$	10 ¹¹		Ω
Output capacitance ²	CI_0	f = 1 MHz		5	pF
Times:					
Rise Fall	tr tr	$\label{eq:Vcc} \begin{array}{l} \mbox{Vcc} = 10 \mbox{ V}, \mbox{ RL} = 100 \Omega \\ \mbox{IF} = 5 \mbox{ mA} \end{array}$		25 25	μs μs


¹ Performance is guaranteed only under the conditions listed in the above table.

² Measured between pins 1, 2, and 6 shorted together, and pins 3, 4, and 5 shorted together. TA = 25° C and duration = 1 s.


Typical Performance Characteristics


Figure 2. Forward Current vs Diode Forward Voltage

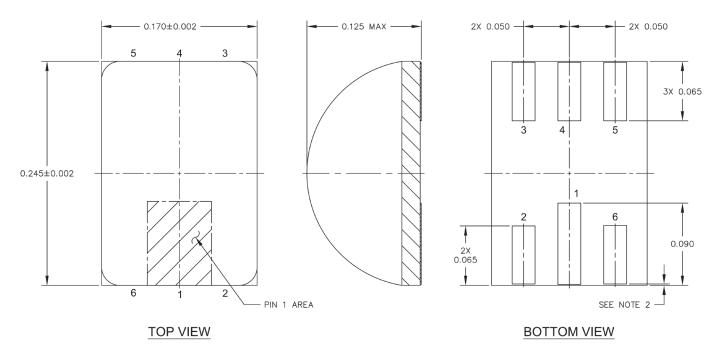

Figure 3. Normalized Collector Current vs Forward Current

Figure 4. Normalized CTRCE vs Temperature

OLC249-006

Ordering Information

Model Name	Manufacturing Part Number		
OLC249: Radiation-Tolerant Phototransistor Hermetic Surface-Mount Optocoupler	0LC249		

Copyright © 2022 Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks' Terms and Conditions of Sale.

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of Skyworks' published specifications or parameters.

Skyworks, the Skyworks symbol, Sky5[®], SkyOne[®], SkyBlue[™], Skyworks Green[™], Clockbuilder[®], DSPLL[®], ISOmodem[®], ProSLIC[®], and SiPHY[®] are trademarks or registered trademarks of Skyworks Solutions, Inc. or its subsidiaries in the United States and other countries. Third-party brands and names are for identification purposes only and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.