

Si8920ISO-EVB

Si8920ISO-EVB USER'S GUIDE

Description

This document describes the operation of the Si8920ISO-EVB.

Kit Contents

- The Si8920ISO Evaluation Kit contains the following items:
- Si8920ISO-EVB.
- Si8920BC-IP installed on the evaluation board.

Si8920ISO-EVB Overview

Si8920ISO-EVB

1. Hardware Overview and Setup

1.1. Connecting to the EVB

Power the EVB by applying isolated 3.0 to 5.5 V_{DC} supplies to terminal blocks J1 and J2. LEDs D21 and D22 will light up. Use separate test points TP1, TP2, TP3, and TP4 for observing VDDA, GNDA, VDDB, and GNDB, respectively.

Note: DO NOT place jumpers across JP10, JP11, or JP12. These are redundant test points for VDDA, VDDB, and AOP/AON, respectively.

There are three connection points for applying and observing differential signals to the inputs of Si8920:

- 1. Through a two conductor ribbon cable to 2x1 header JP8.
- 2. Clipping wires to test points TP7 and TP8.
- 3. Soldering wires directly to through holes located at TP9 and TP10.

The same connector options are available for observing and taking the output signals off circuit board:

- 1. Through a two conductor ribbon cable at 2x1 header JP12.
- 2. Clipping wires to test points TP5 and TP6.
- 3. Soldering wires directly through holes located at TP11 and TP12.

1.2. Driving Si8920 Inputs

Drive the inputs with a low impedance source. The Si8920 has a typical input impedance of 37.2 k Ω . A high source impedance will affect the gain error of the amplifier. The maximum specified differential voltage is 200 mV and the common mode must be within -250 mV to 1 V with respect to GNDA.

Note: When driving inputs from a single-ended source, short the unused input to GNDA. If driving AIP input, install 0 Ω resistor across C23 pads. If driving AIN input, install a 0 Ω resistor across C24 pads.

3

1.3. Input Configuration

To measure input offset, install a jumper (not provided) at JP8 to short AIP and AIN together, and measure the difference voltage between AOP and AON.

Si8920 has a channel bandwidth of approximately 750 kHz. R9-C7-R10 are populated providing low pass filtering with cutoff frequency of approximately 400 kHz. If a different cutoff frequency is desired, replace C7 per Table 1. If it is necessary to replace R9 and R10 for a specific cutoff frequency, ensure that R9 = R10 < 33 Ω .

Table 1. Input Filter Cutoff Frequency for Common Capacitor Values with R9 = R10 = 20 Ω

C7 (nF)	Cutoff Frequency (kHz)	
10*	398	
15	265	
22	181	
33	121	
47	85	
*Note: Installed value.		

Si8920 has excellent immunity to common mode transients. This EVB provides provisions for capacitors C23 and C24 (not populated) between each input pin and GNDA. Placing a small capacitor at C23 and C24 can assist with charge swapping between the inputs and GNDA during common mode transients. However, any mismatch between C23 and C24 will result as a gain error at the output.

1.4. Observing Si8920 Outputs

Use a differential probe when observing the output using an oscilloscope. Most differential oscilloscope probes will connect to the 2x1 headers JP12 without adapters. If only single-ended oscilloscope probes are available, use two and set oscilloscope to subtract the two channels as one channel will only show half of the output.

1.5. Output Configuration

By default, R23 and R24 are populated with 0 Ω resistors that pass the output signal to the output connectors. If low pass filtering at the output is required, replace R23 and R24 and populate C22.

R25 can be populated to measure the differential output drive strength. R26 and R27 can be populated to measure the common mode drive strength to GNDB.

Table 2. Test Point Descriptions

Test Point	Description	Reference
TP1	VDDA	GNDA
TP2	GNDA	N/A
TP3	VDDB	GNDB
TP4	GNDB	N/A
TP5	AOP	GNDB
TP6	AON	GNDB
TP7	AIP	GNDA
TP8	AIN	GNDA
TP13	GNDA	N/A
TP14	GNDB	N/A

Table 3. Jumper Descriptions

Jumper	PIN 1	PIN 2	Default Position	Description
JP8	AIN	AIP	Not Installed Analog Input Connector, Short to Measure Off	
JP10	VDDA	GNDA	Not Installed	DO NOT SHORT – test points only
JP11	VDDB	GNDB	Not Installed	DO NOT SHORT – test points only
JP12	AON	AOP	Not Installed	DO NOT SHORT – test points only

2. Si8920ISO-EVB Schematics

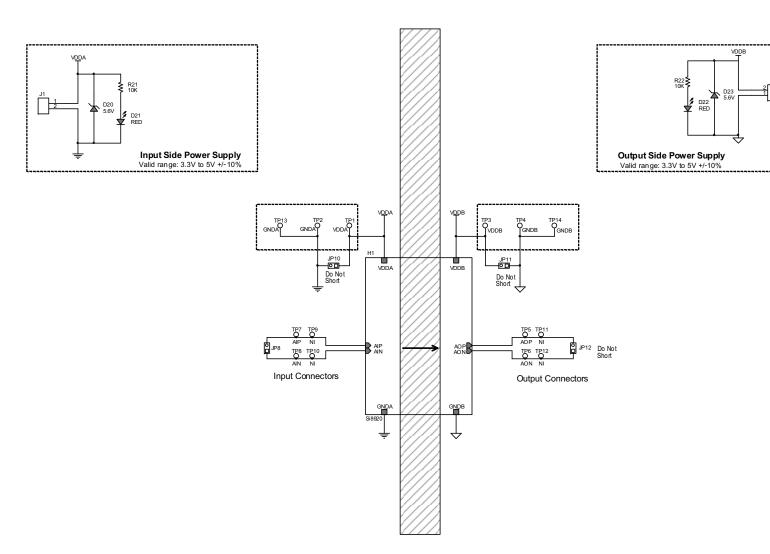


Figure 1. Si8920ISO-EVB Schematic (1 of 2)

6

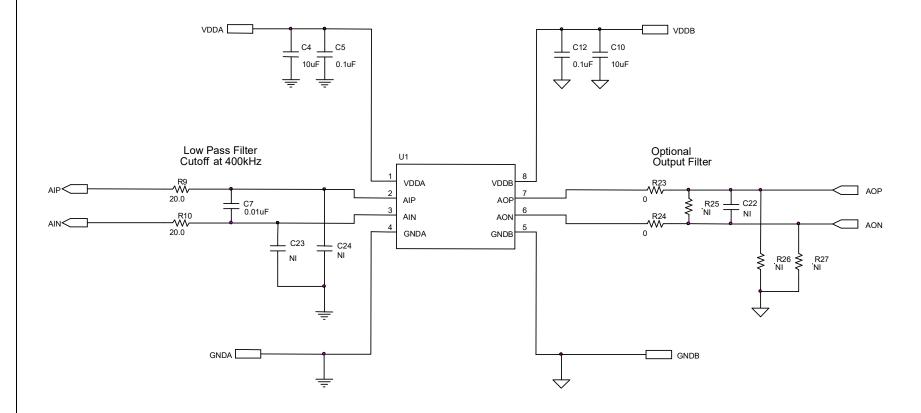
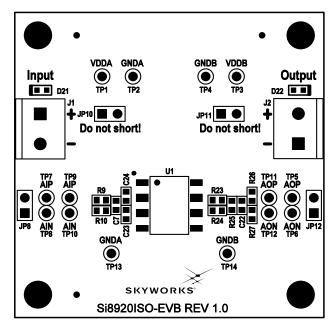
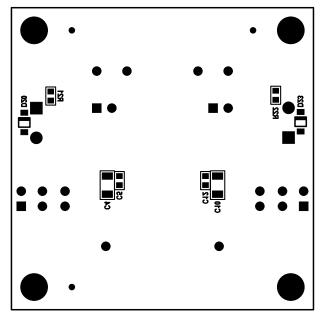




Figure 2. Si8920ISO-EVB Schematic (2 of 2)

3. Si8920ISO-EVB Layout

Top Silkscreen

Bottom Silkscreen

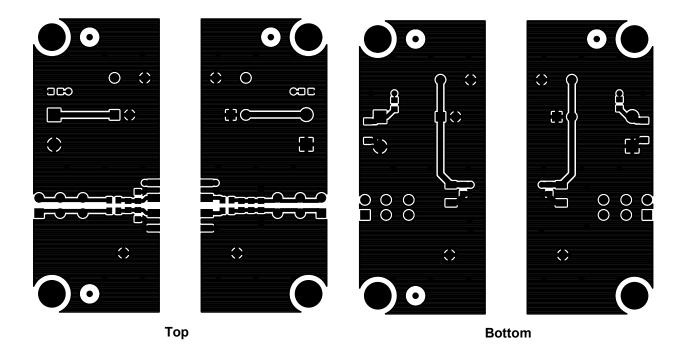


Figure 3. Si8920ISO-EVB Layout

Si8920ISO-EVB

4. Bill of Materials

Table 4. Si8920ISO-EVB Bill of Materials

Part Reference	Description	Manufacturer	Manufacturer Part Number
C4, C10	CAP, 10 μF, 10 V, ±20%, X7R, 1206	Venkel	C1206X7R100-106M
C5, C12	CAP, 0.1 μF, 10 V, ±10%, X7R, 0603	Venkel	C0603X7R100-104K
C7	CAP, 0.01 μF, 16 V, ±10%, X7R, 0603	Venkel	C0603X7R160-103K
D20, D23	DIO, ZENER, 28 V, 500 mW, SOD123	On Semi	MMSZ5255BT1G
D21, D22	LED, RED, 631 nM, 20 mA, 2 V, 54mcd, 0603	Lite-On	LTST-C190KRKT
J1, J2	CONN, TERM BLOCK 2POS, 5MM PCB	Phoenix Contact	1729018
JP8, JP10, JP11, JP12	Header, 2x1, 0.1" pitch, Tin Plated	Samtec	TSW-102-07-T-S
MH1, MH2, MH3, MH4	HDW, Screw, 4-40 x 1/4" Pan Head, Slotted, Nylon	Richco Plastic Co	NSS-4-4-01
R9, R10	RES, 20.0 Ω , 1/10 W, ±1%, ThickFilm, 0603	Venkel	CR0603-10W-20R0F
R21, R22	RES, 10 K, 1/10 W, ±5%, ThickFilm, 0603	Venkel	CR0603-10W-103J
R23, R24	RES, 0 Ω, 1A, ThickFilm, 0603	Venkel	CR0603-16W-000
SO1, SO2, SO3, SO4	HDW, STANDOFF, 1/4" HEX, 4-40x3/4", NYLON	Keystone	1902D
TP1, TP2, TP3, TP4, TP5, TP6, TP7, TP8		Kobiconn	151-203-RC
U1	U1 IC, ISOLATED AMPLIFIER FOR CURRENT SHUNT MEASUREMENT, 8PIN SMD GULL WING		Si8920BC-IP

Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com

Rev. 0.1 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • October 7, 2021

5. Ordering Guide

Table 5. Si8920ISO-EVB Ordering Guide

Ordering Part Number (OPN)	Description
Si8920ISO-KIT	Si8920 Analog isolator evaluation board kit

www.skyworksinc.com/quality

Support & Resources www.skyworksinc.com/support

Copyright © 2021 Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks' Terms and Conditions of Sale.

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of Skyworks' published specifications or parameters.

Skyworks, the Skyworks symbol, Sky5®, SkyOne®, SkyBlue™, Skyworks Green™, Clockbuilder®, DSPLL®, ISOmodem®, ProSLIC®, and SiPHY® are trademarks or registered trademarks of Skyworks Solutions, Inc. or its subsidiaries in the United States and other countries. Third-party brands and names are for identification purposes only and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.