

DATA SHEET

Si53212, Si53208, and Si53204: 12/8/4-Output PCI-Express Low Jitter, Low Power Gen 1 to Gen 6 Clock Buffer

Applications

- Data centers
- Servers
- Storage
- PCIe add-on cards
- Communications
- Industrial

Key Features

- 4, 8, and 12 Output 100 MHz PCle Gen1 through Gen 6, compliant clock fanout buffer
- Low additive jitter: 0.02 ps rms max, Gen 6
- Low-power, push-pull, HCSL compatible differential outputs
- 10 MHz to 200 MHz clock input
- Individual hardware control pins and I2C controls for Output Enable
- Spread spectrum tolerant to pass through a spread input clock for EMI reduction
- Supports Intel QPI/UPI standards
- Single 1.5 to 1.8 V power supply
- Internal 100 Ω or 85 Ω output impedance matching
- Adjustable output slew rate
- Temperature range: –40 °C to 85 °C
- Small QFN package options:
 - 64-pin QFN (9 x 9 mm): 12 Output
 - 48-pin QFN (6 x 6 mm): 8 Output
 - 32-pin QFN (5 x 5 mm): 4 Output
- Pb-free, RoHS-6 compliant

1

Description

The Si53212, Si53208, and Si53204 are the industry's highest performance, low additive jitter, low power PCIe clock fanout buffer family that can source 4, 8, or 12 clock outputs. All differential clock outputs are compliant to PCIe Gen 1 through Gen 6 common clock and separate reference clock specifications.

This family of buffers is spread spectrum tolerant to pass through a spread input clock. Each device has an individual hardware output enable control pin for enabling and disabling each differential output. The device can also support input frequencies from 10 MHz to 200 MHz. All the devices are packaged in small QFN packages. The small footprint and low-power consumption make this family of PCIe clock fanout buffers ideal for industrial and consumer applications.

To confirm PCI-Express compliance, the Skyworks PCIe Clock Jitter Tool makes measuring PCIe clock jitter quick and easy. Download it for free at https://www.skyworksinc.com/en/Application-Pages/pcie-clock-jitter-tool.

Skyworks Green[™] products are compliant with all applicable legislation and are halogen-free. For additional information, refer to *Skyworks Definition of Green*[™], document number SQ04–0074.

August 31, 2023

1. Feature List

- 12/8/4-output 100 MHz PCle Gen 1 through Gen 6 CC and SRIS compliant clock fanout buffer
- Low-power, push-pull, HCSL compatible differential outputs from 10 MHz to 200 MHz clock input
- Low additive jitter of 0.02 ps rms max to meet PCIe Gen 6 specifications
- Individual hardware control pins and I2C for Output Enable to easily disable unused outputs for power savings
- Spread spectrum tolerant to pass through a spread input clock for EMI reduction
- Supports Intel QPI/UPI jitter requirements with margin
- Internal 100 Ω or 85 Ω output impedance matching
- Eliminates external termination resistors to reduce board space
- Adjustable slew rate to improve signal quality for different applications and board designs
- Single 1.5 to 1.8 V power supply
- Temperature range: –40°C to 85°C
- Package options:
 - 64-pin QFN (9 x 9 mm), 12-output
 - 48-pin QFN (6 x 6 mm), 8-output
 - 32-pin QFN (5 x 5 mm), 4-output
- Pb-free, RoHS-6 compliant

2. Functional Block Diagrams

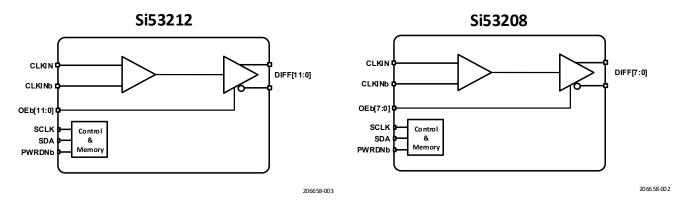


Figure 1. Si53212 Block Diagram

Figure 2. Si53208 Block Diagram

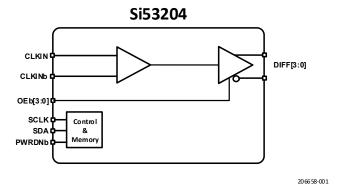


Figure 3. Si53204 Block Diagram

3. Pin Descriptions

3.1. Si523212 Pin Descriptions

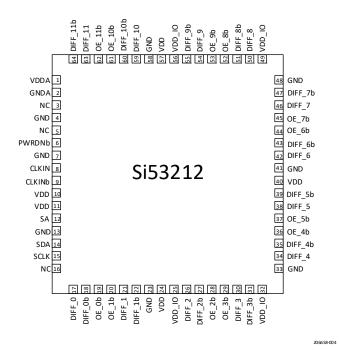


Figure 4. Si53212 64-Pin QFN Pinout

Table 1. Si53212 Signal Descriptions

Pin #	Name	Туре	Description
1	VDDA	PWR	Analog power supply
2	GNDA	GND	Analog ground
3	NC	NC	No connection
4	GND	GND	Ground
5	NC	NC	No connection
6	PWRDNb	I	Active low input pin asserts power down (PWRDNb) and disables all outputs (This pin has an internal 100 kΩ pull-up).
7	GND	GND	Ground
8	CLKIN	I	Clock input
9	CLKINb	I	Complementary clock input
10	VDD	PWR	Power supply
11	VDD	PWR	Power supply
12	SA	I	Address select for I^2C (this pin has an internal 60 k Ω pull-up)
13	GND	GND	Ground
14	SDA	I/O	I ² C compatible SDATA
15	SCLK	I	I ² C compatible SCLOCK
16	NC	NC	No connect
17	DIFF_0	O, DIF	HCSL DIFF_0, true
18	DIFF_0b	O, DIF	HCSL DIFF_0, complement
19	OE_0b	I, PD	Output enable for DIFF_0 pair (This pin has an internal 100 k Ω pull-down). 0 = Enable outputs; 1 = Disable outputs

Table 1. Si53212 Signal Descriptions (Continued)

Pin #	Name	Туре	Description
20	OE_1b	I, PD	Output enable for DIFF_1 pair (This pin has an internal 100 k Ω pull-down). 0 = Enable outputs; 1 = Disable outputs
21	DIFF_1	O, DIF	HCSL DIFF_1, true
22	DIFF_1b	O, DIF	HCSL DIFF_1, complement
23	GND	GND	Ground
24	VDD	PWR	Power supply
25	VDD_IO	PWR	Output power supply
26	DIFF_2	O, DIF	HCSL DIFF_2, true
27	DIFF_2b	O, DIF	HCSL DIFF_2, complement
28	OE_2b	I, PD	Output enable for DIFF_2 pair (This pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable outputs
29	OE_3b	I, PD	Output enable for DIFF_3 pair (this pin has an internal 100 k Ω pull-down), 0 = Enable outputs; 1 = Disable outputs
30	DIFF_3	O, DIF	HCSL DIFF_3, true
31	DIFF_3b	O, DIF	HCSL DIFF_3, complement
32	VDD_IO	PWR	Output power supply
33	GND	GND	Ground
34	DIFF_4		HCSL DIFF_4, true
35	DIFF_4b	O, DIF	HCSL DIFF_4, complement
36	OE_4b	I, PD	Output enable for DIFF_4 pair (This pin has an internal 100 k Ω pull-down), 0 = Enable outputs; 1 = Disable outputs
37	OE_5b	I, PD	Output enable for DIFF_5 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable outputs
38	DIFF_5	O, DIF	HCSL DIFF_5, true
39	DIFF_5b	O, DIF	HCSL DIFF_5, complement
40	VDD	PWR	Power supply
41	GND	GND	Ground
42	DIFF_6	O, DIF	HCSL DIFF_6, true
43	DIFF_6b	O, DIF	HCSL DIFF_6, complement
44	OE_6b	I, PD	Output enable for DIFF_6 pair (this pin has an internal 100 k Ω pull-down), 0 = Enable outputs; 1 = Disable outputs
45	OE_7b	I, PD	Output enable for DIFF_7 pair (this pin has an internal 100 k Ω pull-down), 0 = Enable outputs; 1 = Disable outputs
46	DIFF_7	O, DIF	HCSL DIFF_7, true
47	DIFF_7b	O, DIF	HCSL DIFF_7, complement
48	GND	GND	Ground
49	VDD_IO	PWR	Output power supply
50	DIFF_8	O, DIF	HCSL DIFF_8, true
51	DIFF_8b	O, DIF	HCSL DIFF_8, complement
52	OE_8b	I, PD	Output enable for DIFF_8 pair (this pin has an internal 100 k Ω pull-down), 0 = Enable outputs; 1 = Disable outputs
53	OE_9b	I, PD	Output enable for DIFF_9 pair (this pin has an internal 100 k Ω pull-down), 0 = Enable outputs; 1 = Disable outputs
54	DIFF_9		HCSL DIFF_9, true
55	DIFF_9b	O, DIF	HCSL DIFF_9, complement
56	VDD_IO	PWR	Output power supply
57	VDD	PWR	Power supply
58	GND	GND	Ground
59	DIFF_10	O, DIF	HCSL DIFF_10, true
60	DIFF_10b	O, DIF	HCSL DIFF_10, complement
61	OE_10b	I, PD	Output enable for DIFF_10 pair (this pin has an internal 100 k Ω pull-down), 0 = Enable outputs; 1 = Disable outputs
62	OE_11b	I, PD	Output enable for DIFF_11 pair (this pin has an internal 100 k Ω pull-down), 0 = Enable outputs; 1 = Disable outputs
63	DIFF_11	O, DIF	HCSL DIFF_11, true
64	DIFF_11b	O, DIF	HCSL DIFF_11, complement
	GND PAD	GND	The ground pad provides an electrical and thermal connection to ground and must be connected for proper operation. Use as many vias as practical, and keep the via length to an internal ground plane as short as possible.

3.2. Si53208 Pin Descriptions

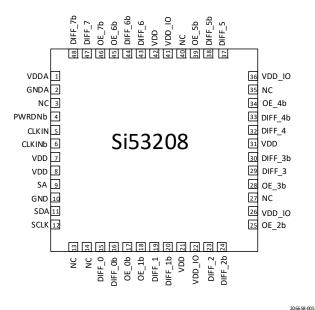


Figure 5. Si53208 48-pin QFN Pinout

Table 2. Si53208 Signal Descriptions

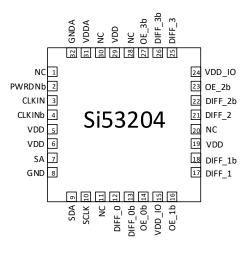

Pin	Name	Туре	Description
1	VDDA	PWR	Analog power supply
2	GNDA	PWR	Analog ground
3	NC	NC	No connection
4	PWRDNb	I	Active low input pin asserts power down (PWRDNb) and disables all outputs (this pin has an internal 100 kΩ pull-up)
5	CLKIN	I	Clock input
6	CLKINb	I	Complementary clock input
7	VDD	PWR	Power supply
8	VDD	PWR	Power supply
9	SA	I	Address select for I 2 C (this pin has an internal 60 k Ω pull-up)
10	GND	GND	Ground
11	SDA	I/O	I ² C compatible SDATA
12	SCLK	ı	I ² C compatible SCLOCK
13	NC	NC	No connection
14	NC	NC	No connection
15	DIFF_0	O, DIF	HCSL DIFF_0, true
16	DIFF_0b	O, DIF	HCSL DIFF_0, complement
17	OE_0b	I, PD	Output enable for DIFF_0 pair (this pin has an internal 100 k Ω pull-down), 0 = Enable outputs; 1 = Disable outputs
18	OE_1b	I, PD	Output enable for DIFF_1 pair (this pin has an internal 100 k Ω pull-down), 0 = Enable outputs; 1 = Disable outputs
19	DIFF_1	O, DIF	HCSL DIFF_1, true
20	DIFF_1b	O, DIF	HCSL DIFF_1, complement
21	VDD	PWR	Power supply
22	VDD_IO	PWR	Output power supply
23	DIFF_2	O, DIF	HCSL DIFF_2, true
24	DIFF_2b	O, DIF	HCSL DIFF_2, complement

Table 2. Si53208 Signal Descriptions (Continued)

Pin	Name	Туре	Description
25	OE_2b	I, PD	Output enable for DIFF_2 pair (this pin has an internal 100 k Ω pull-down), 0 = Enable outputs; 1 = Disable outputs
26	VDD_IO	PWR	Output power supply
27	NC	NC	No connection
28	OE_3b	I, PD	Output enable for DIFF_3 pair (this pin has an internal 100 k Ω pull-down), 0 = Enable outputs; 1 = Disable outputs
29	DIFF_3	O, DIF	HCSL DIFF_3, true
30	DIFF_3b	O, DIF	HCSL DIFF_3, complement
31	VDD	PWR	Power supply
32	DIFF_4	O, DIF	HCSL DIFF_4, true
33	DIFF_4b	O, DIF	HCSL DIFF_4, complement
34	OE_4b	I, PD	Output enable for DIFF_4 pair (this pin has an internal 100 k Ω pull-down), 0 = Enable outputs; 1 = Disable outputs
35	NC	NC	No connection
36	VDD_IO	PWR	Output power supply
37	DIFF_5	O, DIF	HCSL DIFF_5, true
38	DIFF_5b	O, DIF	HCSL DIFF_5, complement
39	OE_5b	I, PD	Output enable for DIFF_5 pair (this pin has an internal 100 k Ω pull-down), 0 = Enable outputs; 1 = Disable outputs
40	NC	NC	No connection
41	VDD_IO	PWR	Output power supply
42	VDD	PWR	Power supply
43	DIFF_6	O, DIF	HCSL DIFF_6, true
44	DIFF_6b	O, DIF	HCSL DIFF_6, complement
45	OE_6b	I, PD	Output enable for DIFF_6 pair (this pin has an internal 100 k Ω pull-down), 0 = Enable outputs; 1 = Disable outputs
46	OE_7b	I, PD	Output enable for DIFF_7 pair (This pin has an internal 100 k Ω pull-down), 0 = Enable outputs; 1 = Disable outputs
47	DIFF_7	O, DIF	HCSL DIFF_7, true
48	DIFF_7b	O, DIF	HCSL DIFF_7, complement
	GND PAD	GND	The ground pad provides an electrical and thermal connection to ground and must be connected for proper operation. Use as many vias as practical, and keep the via length to an internal ground plane as short as possible.

8

3.3. Si53204 Pin Descriptions

206658-006

Figure 6. Si53204 32-pin QFN Pinout

Table 3. Si53204 Signal Descriptions

Pin#	Name	Туре	Description
1	NC	NC	No connection
2	PWRDNb	I	Active low input pin asserts power down (PWRDNb) and disables all outputs (this pin has an internal 100 kΩ pull-up)
3	CLKIN	I	Clock input
4	CLKINb	I	Complementary clock input
5	VDD	PWR	Power supplyl
6	VDD	PWR	Power supply
7	SA	I	Address select for I^2C (this pin has an internal 60 k Ω pull-up)
8	GND	GND	Ground
9	SDA	I/O	I ² C compatible SDATA
10	SCLK	I	I ² C compatible SCLOCK
11	NC	NC	No connection
12	DIFF_0	O, DIF	HCSL DIFF_0, true
13	DIFF_0b	O, DIF	HCSL DIFF_0, complement
14	OE_0b	I, PD	Output enable for DIFF_0 pair (this pin has an internal 100 k Ω pull-down), 0 = Enable outputs; 1 = Disable outputs
15	VDD_IO	PWR	Output power supply
16	OE_1b	I, PD	Output enable for DIFF_1 pair (this pin has an internal 100 k Ω pull-down), 0 = Enable outputs; 1 = Disable outputs
17	DIFF_1	O, DIF	HCSL DIFF_1, true
18	DIFF_1b	O, DIF	HCSL DIFF_1, complement
19	VDD	PWR	Power supply
20	NC	NC	No connection
21	DIFF_2	O, DIF	HCSL DIFF_2, true
22	DIFF_2b	O, DIF	HCSL DIFF_2, complement
23	OE_2b	I, PD	Output enable for DIFF_2 pair (this pin has an internal 100 k Ω pull-down), 0 = Enable outputs; 1 = Disable outputs
24	VDD_IO	PWR	Output power supply
25	DIFF_3	O, DIF	HCSL DIFF_3, true
26	DIFF_3b	O, DIF	HCSL DIFF_3, complement

Table 3. Si53204 Signal Descriptions (Continued)

Pin #	Name	Туре	Description
27	OE_3b	I, PD	Output enable for DIFF_3 pair (this pin has an internal 100 k Ω pull-down), 0 = Enable outputs; 1 = Disable outputs
28	NC	NC	No connection
29	VDD	PWR	Power supply
30	NC	NC	No connection
31	VDDA	PWR	Analog power supply
32	GNDA	PWR	Analog ground
	GND PAD	GND	The ground pad provides an electrical and thermal connection to ground and must be connected for proper operation. Use as many vias as practical, and keep the via length to an internal ground plane as short as possible.

4. Electrical Specifications

Table 4. DC Electrical Specifications (VDD = VDDA = 1.5 V ±5%)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
1.5 V Operating voltage	VDD	1.5 V ±5%	1.425	1.5	1.575	V
Output supply voltage	VDD_IO	Supply voltage for differential low power outputs	0.9975	1.05 to 1.5	1.575	V
1.5 V Input high voltage	V _{IH}	Control input pins	0.75 VDD	_	VDD +0.3	V
1.5 V Input low voltage	V _{IL}	Control input pins	-0.3	_	0.25 VDD	V
	I _{IN}	Single-ended inputs, VIN = GND, VIN = VDD	-5	_	5	uA
Input current	I _{INP}	Single-ended inputs, VIN = 0 V, inputs with internal pull-up resistors VIN = VDD, inputs with internal pull-down resistors	-200	_	200	uA
Input pin capacitance	C _{IN}		1.5	_	5	pF
Output pin capacitance	C _{OUT}		_	_	6	pF
Pin inductance	L _{IN}		_	_	7	nH
Si53212 Current Consumptio	n (VDD = VDDA =	1.5 V ±5%)		•		
	I _{DD_PD_total}		_	1.3	1.7	mA
Dower down current	I _{DD_PD}	VDD, except VDDA and VDD_IO, all outputs off	_	0.4	0.75	mA
Power down current	I _{DD_APD}	VDDA, all outputs off	_	0.6	0.75	mA
	I _{DD_IOPD}	VDD_IO, all outputs off	_	0.3	0.5	mA
	I _{DD_1.5V_Total}	All outputs enabled. Differential clocks with 5" traces and 2 pF load.	_	60	71.5	mA
Dynamic supply current	I _{DD_OP}	VDD, except VDDA and VDD_IO, all differential outputs active at 100 MHz	_	12	13	mA
	I _{DD_AOP}	VDDA, all differential outputs active at 100 MHz	_	2.2	2.6	mA
	I _{DD_IOOP}	VDD_IO, all differential outputs active at 100 MHz	_	46	55.5	mA
Si53208 Current Consumptio	n (VDD = VDDA =	1.5 V ±5%)				
	I _{DD_PD_total}		_	1.3	1.7	mA
Power down current	I _{DD_PD}	VDD, except VDDA and VDD_IO, all outputs off	_	0.4	0.75	mA
Power down current	I _{DD_APD}	VDDA, all outputs off	_	0.6	0.75	mA
	I _{DD_IOPD}	VDD_IO, all outputs off	_	0.3	0.5	mA
	I _{DD_1.5V_Total}	All outputs enabled. Differential clocks with 5" traces and 2 pF load.	_	42	51.5	mA
Dynamic supply current	I _{DD_OP}	VDD, except VDDA and VDD_IO, all differential outputs active at 100 MHz	-	10	11	mA
	I _{DD_AOP}	VDDA, all differential outputs active at 100 MHz	_	2.2	2.6	mA
	I _{DD_IOOP}	VDD_IO, all differential outputs active at 100 MHz	_	30	37.5	mA
Si53204 Current Consumptio	n (VDD = VDDA =	1.5 V ±5%)				
	I _{DD_PD_total}		_	1.3	1.7	mA
Dower down current	I _{DD_PD}	VDD, except VDDA and VDD_IO, all outputs off	_	0.4	0.75	mA
Power down current	I _{DD_APD}	VDDA, all outputs off	_	0.6	0.75	mA
	<u> </u>	VDD IO, all outputs off		0.3	0.5	mA

Table 4. DC Electrical Specifications (Continued)

(VDD = VDDA = 1.5 V ±5%)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
	I _{DD_1.8V_Total}	All outputs enabled. Differential clocks with 5" traces and 2 pF load.	_	26	31.5	mA
Dynamic supply current	I _{DD_OP}	VDD, except VDDA and VDD_IO, all differential outputs active at 100 MHz	_	8.5	9.5	mA
	I _{DD_AOP}	VDDA, all differential outputs active at 100 MHz	_	2.2	2.6	mA
	I _{DD_IOOP}	VDD_IO, all differential outputs active at 100 MHz	_	15.5	19	mA

Table 5. DC Electrical Specifications

(VDD = VDDA = 1.8 V ±5%)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
1.8 V Operating voltage	VDD	1.8 V ±5%	1.71	1.8	1.89	V
Output supply voltage	VDD_IO	Supply voltage for differential low power outputs	0.9975	1.05 to 1.8	1.9	V
1.8 V Input high voltage	V _{IH}	Control input pins	0.75 VDD	_	VDD +0.3	V
1.8 V Input low voltage	V _{IL}	Control input pins	-0.3	_	0.25 VDD	V
	I _{IN}	Single-ended inputs, VIN = GND, VIN = VDD	- 5	_	5	uA
Input current	I _{INP}	Single-ended inputs, VIN = 0 V, inputs with internal pull-up resistors VIN = VDD, inputs with internal pull-down resistors	-200	_	200	uA
Input pin capacitance	C _{IN}		1.5	_	5	pF
Output pin capacitance	C _{OUT}		_	_	6	pF
Pin inductance	L _{IN}		_	_	7	nH
Si53212 Current Consumptio	n (VDD = VDDA =	1.8 V ±5%)				
	I _{DD_PD_total}		_	1.4	2.7	mA
Power down current	I _{DD_PD}	VDD, except VDDA and VDD_IO, all outputs off	_	0.5	1.7	mA
Power down current	I _{DD_APD}	VDDA, all outputs off	_	0.6	0.75	mA
	I _{DD_IOPD}	VDD_IO, all outputs off	_	0.3	0.65	mA
	I _{DD_1.8V_Total}	All outputs enabled. Differential clocks with 5" traces and 2 pF load	_	61	74	mA
Dynamic supply current	I _{DD_OP}	VDD, except VDDA and VDD_IO, all differential outputs active at 100 MHz	_	12	14.5	mA
	I _{DD_AOP}	VDDA, all differential outputs active at 100 MHz	_	2.2	2.6	mA
	I _{DD_IOOP}	VDD_IO, all differential outputs active at 100 MHz	_	47	56.5	mA
Si53208 Current Consumptio	n (VDD = VDDA =	1.8 V ±5%)		•		
	I _{DD_PD_total}		_	1.4	2.7	mA
Power down current	I _{DD_PD}	VDD, except VDDA and VDD_IO, all outputs off	_	0.5	1.7	mA
rower down current	I _{DD_APD}	VDDA, all outputs off	_	0.6	0.75	mA
	I _{DD_IOPD}	VDD_IO, all outputs off	_	0.3	0.65	mA

Table 5. DC Electrical Specifications (Continued)

(VDD = VDDA = 1.8 V ±5%)

Parameter	Symbol			Тур	Max	Unit
	I _{DD_1.8V_Total}	All outputs enabled. Differential clocks with 5" traces and 2 pF load	_	44	53.5	mA
Dynamic supply current	I _{DD_OP}	VDD, except VDDA and VDD_IO, all differential outputs active at 100 MHz	_	10.5	12.5	mA
	I _{DD_AOP}	VDDA, all differential outputs active at 100 MHz	_	2.2	2.6	mA
	I _{DD_IOOP}	VDD_IO, all differential outputs active at 100 MHz	_	31	38	mA
Si53204 Current Consumption (VDD = VDDA = 1.8 V ±5%)						
	I _{DD_PD_total}		_	1.4	2.7	mA
Power down current	I _{DD_PD}	VDD, except VDDA and VDD_IO, all outputs off	_	0.5	1.7	mA
rower down current	I _{DD_APD}	VDDA, all outputs off	_	0.6	0.75	mA
	I _{DD_IOPD}	VDD_IO, all outputs off	_	0.3	0.65	mA
	I _{DD_1.8V_Total}	All outputs enabled. Differential clocks with 5" traces and 2 pF load	_	27	33	mA
Dynamic supply current	I _{DD_OP}	VDD, except VDDA and VDD_IO, all differential outputs active at 100 MHz	_	9	10.5	mA
	I _{DD_AOP}	VDDA, all differential outputs active at 100 MHz	_	2.2	2.6	mA
	I _{DD_IOOP}	VDD_IO, all differential outputs active at 100 MHz	_	16	19.5	mA

Table 6. AC Electrical Specifications¹

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
CLKIN frequency range			10	_	200	MHz
CLKIN rising and falling slew rate	CLKIN_T _R _T _F	Single-ended measurement: VOL = 0.175 to VOH = 0.525 V (Averaged)	0.6	_	4	V/ns
Differential input high voltage	V _{IH}		150	_	_	mV
Differential input low voltage	V _{IL}		_	_	-150	mV
Crossing point voltage	V _{OX}	Single-ended measurement	250	_	550	mV
Crossing point voltage (var)	V _{OX_DELTA}	Single-ended measurement	_	_	140	mV
Differential ringback voltage	V _{RB}		-100	_	100	mV
Time before ringback voltage	T _{STABLE_RB}		500	_	_	ps
Absolute maximum input voltage	V _{MAX}		_	_	1150	mV
Absolute minimum input voltage	V _{MIN}		-300	_	_	mV
Duty cycle for each clock output signal in a given differential pair	T _{DC}	Measured at crossing point V _{OX}	45	_	55	%
Rise/fall matching	T _{FRM}	Determined as a fraction of 2 x $(T_R - T_F)(T_R + T_F)$	-	_	20	%
Control Input Pins						
Trise	T _R	Rise time of single-ended control inputs	_	_	5	ns
Tfall	T _F	Fall time of single-ended control inputs	_	_	5	ns
DIFF HCSL				!	!	•
Output-to-output skew	TSKEW	Measured at 0 V differential	_	_	50	ps
Additive cycle-to-cycle jitter	J _{ADD_CCJ}	Measured at 0 V differential	_	14	20	ps
Additive phase jitter	J_{ADD}	12 kHz to 20 MHz	_	_	0.21	ps (RMS)
PCIe gen 1 additive Pk-Pk jitter ²	J _{ADD_Pk-Pk}	PCIe Gen 1	0	10	17	ps
DCI 2 - ddixi		10 kHz < F < 1.5 MHz	0	0.125	0.2	ps (RMS)
PCIe gen 2 additive phase jitter ²	J _{ADD_GEN2}	1.5 MHz < F < Nyquist	0	0.003	0.005	ps (RMS)
PCIe gen 3 additive phase jitter ²	J _{ADD_GEN3}	Includes PLL BW 2 to 4 MHz, CDR = 10 MHz	_	0.04	0.06	ps (RMS)
PCIe gen 3 SRIS additive phase jitter ²	J _{ADD_GEN3_SRIS}	Includes PLL BW 2 to 4 MHz, CDR = 10 MHz	_	0.055	0.07	ps (RMS)
PCIe gen 3 SRNS additive phase jitter ²	J _{ADD_GEN3_SRNS}	Includes PLL BW 2 to 4 MHz, CDR = 10 MHz	_	0.035	0.043	ps (RMS)
PCIe gen 4 additive phase jitter ²	J _{ADD_GEN4}	Includes PLL BW 2 to 4 MHz, CDR = 10 MHz	_	0.04	0.06	ps (RMS)
PCIe gen 4 SRIS additive phase jitter ²	J _{ADD_GEN4_SRIS}	Includes PLL BW 2 to 4 MHz, CDR = 10 MHz	_	0.055	0.07	ps (RMS)
PCIe gen 4 SRNS additive phase jitter ²	J _{ADD_GEN4_SRNS}	Includes PLL BW 2 to 4 MHz, CDR = 10 MHz	_	0.035	0.043	ps (RMS)
PCIe gen 5 additive phase jitter ^{2,3}	J _{ADD_GEN5}	Includes PLL BW 500 kHz to 1.8 MHz, CDR = 20 MHz	_	0.015	0.021	ps (RMS)
PCIe gen 5 SR additive phase jitter ^{2,3}	J _{ADD_GEN5_SR}	Includes PLL BW 500 kHz to 1.8 MHz, CDR = 20 MHzs	_	0.02	0.03	ps (RMS)
PCIe gen 6 additive phase jitter ^{2,3}	J _{ADD_Gen6}	Includes PLL BW 500 kHz to 1 MHz, CDR = 20 MHz	_	0.015	0.02	ps (RMS)
PCIe gen 6 SR additive phase jitter ^{2,3}	J _{ADD_Gen6_SR}	Includes PLL BW 500 kHz to1 MHz, CDR = 20 MHz	_	0.015	0.02	ps (RMS)
Slew rate ⁴	T _R /T _F	Measured differentially from ±150 mV (fast setting)	_	2.4	3.7	V/ns
		Measured differentially from ±150 mV (slow setting)	_	1.9	2.9	V/ns
Slew rate matching	$\Delta T_R/T_F$		_	_	10	%
Voltage high	V_{HIGH}		600	_	850	mV

Table 6. AC Electrical Specifications (Continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit		
Voltage low	V _{LOW}		-150	_	150	mV		
Max voltage	V _{MAX}		_	_	1150	mV		
Min voltage	V _{MIN}		-300	_	_	mV		
Enable/Disable and Setup								
Clock stabilization from power-up	T _{STABLE}	Minimum ramp rate 200 V/s	_	1	5	ms		
OE_b latency	T _{OEb_LAT}	Differential outputs start after OE_b assertion, differential outputs stop after OE_b deassertion	_	2	3.5	clocks		
PWRDNb latency to differential outputs enable	T _{PWRDNb}	Differential outputs enable after PD_b deassertion	_	490	520	μs		
Intel QPI Specifications for 100 MHz and	d 133 MHz							
Intel QPI and ŞMI REFCLK	1	4.8 Gb/s, 133 MHz, 12UI, 7.8 M	-	0.16	_	ps (RMS)		
additive jitter ⁵	J _{ADD_QPI_SMI}	6.4 Gb/s, 133 MHz, 12UI, 7.8 M	_	0.12	_	ps (RMS)		
Intel QPI and SMI REFCLK additive jitter ⁵	J _{ADD_SQPI_SMI}	8 Gb/s, 100 MHz, 12 UI	_	0.09	_	ps (RMS)		
Intel QPI and SMI REFCLK additive jitter ⁵	J _{ADD_QPI_SMI}	9.6 Gb/s, 100 MHz, 12UI	_	0.07	_	ps (RMS)		
Intel UPI Specifications for 100 MHz								
UPI Additive Phase Jitter	J _{ADD_UPI}	Intel UPI 1–10 MHz	_	0.67	1	ps		

^{1.} Skyworks PCIe Clock Jitter Tool is used to obtain measurements for additive phase Jitter. Additive Phase Jitter = sqrt (output jitter^2 - input jitter^2). Input used is 100 MHz from Si5340.

^{2.} Based on PCI Express(R) Base Specification. For complete PCIe specifications, visit www.pcisig.com.

Limiting amp is used at the input of the scope.
 Input clock slew rate of 3.0 V/ns used for jitter measurements.

Post processed evaluation through Intel supplied Matlab scripts, using Intel PCIe Clock Jitter Tool. Measuring on 100 MHz output using the template file in the Intel PCIe Clock Jitter Tool. Measuring on 100 MHz, 133 MHz outputs using the template file in the Intel PCIe Jitter Tool.

Table 7. Thermal Conditions

Parameter	Symbol	Test Condition	Value	Units
Si53204 – 32-QFN ¹				
		Still Air	50.3	
Thermal resistance, junction to ambient	θ_{JA}	Air Flow 1 m/s	47	°C/W
		Air Flow 2 m/s	45.6	
Thermal resistance, junction to case	θ_{JC}		10.3	°C/W
Thermal resistance, junction to board	θ_{JB}		30.9	°C/W
Calculation parameter, junction to top center	Ψ_{JT}		2.3	°C/W
Calculation parameter, junction to board	Ψ_{JB}		30.9	°C/W
Si53208 – 48-QFN ²			-	
		Still Air	27.9	
Thermal resistance, junction to ambient	θ_{JA}	Air Flow 1 m/s	24.5	°C/W
		Air Flow 2 m/s	23.5	
Thermal resistance, junction to case	θ_{JC}		17	°C/W
Thermal resistance, junction to board	θ_{JB}		13.4	°C/W
Calculation parameter, junction to top center	Ψ_{JT}		0.5	°C/W
Calculation parameter, junction to board	Ψ_{JB}		13.1	°C/W
Si53212 – 64-QFN ³			1	
		Still Air	27.2	
Thermal resistance, junction to ambient	θ_{JA}	Air Flow 1 m/s	23.9	°C/W
		Air Flow 2 m/s	22.5	
Thermal resistance, junction to case	θ_{JC}		13.7	°C/W
Thermal resistance, junction to board	θ_{JB}		14.4	°C/W
Calculation parameter, junction to top center	Ψ_{JT}		0.5	°C/W
Calculation parameter, junction to board	Ψ_{JB}		14.2	°C/W

^{1.} Based on a PCB with a dimension of 3" x 4.5", PCB thickness of 1.6 mm, and PCB center land with 4 via to top plane.

Based on 4 layer PCB with a dimension of 3" x 4.5", PCB thickness of 1.6 mm, and PCB center land with 9 via to top plane.
 Based on 4 Layer PCB with a dimension of 3" x 4.5", PCB thickness of 1.6 mm, and PCB center land with 25 via to top plane.

Table 8. Absolute Maximum Conditions 12

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Main supply voltage	V _{DD_1.8V}	Functional	_	_	2.5	V
Input voltage	V _{IN}	Relative to VSS	-0.5	_	VDD + 0.5	V
Input high voltage i ² c	V _{IH_I2C}	SDATA and SCLK	_		3.6	V
Temperature, storage	T _S	Non-functional	-65	_	150	Celsius
Temperature, operating ambient	T _A	Functional	-40	_	85	Celsius
Temperature, junction	T _J	Functional	_	_	125	Celsius
ESD protection (human body model)	ESDHBM	JEDEC (JESD 22-A114)	-2000	_	2000	V
Flammability rating	UL-94	UL (Class)	V-0			

^{1.} While using multiple power supplies, the voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is not required.

ESD Handling: Industry-standard ESD handling precautions must be adhered to at all times to avoid damage to this device.

^{2.} Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value. Exceeding any of the limits listed here may result in permanent damage to the device.

5. Functional Description

5.1. OEb Pin

The OEb pin is an active low input used for synchronous stopping and starting the respective output clock while the rest of the device continues to function. By default, the OEb pin is set to logic low, and I^2C OE bit is set to logic high. There are two methods to disable the output clock: the OEb pin is pulled to a logic high, or the I^2C OE bit is set to a logic low. This pin has a 100 k Ω internal pull-down.

5.2. OEb Assertion

The assertion of the OEb function is achieved by pulling the OEb pin low while the I²C OE bit is high, which causes the respective stopped output to resume normal operation. No short or stretched clock pulses are produced when the clocks resume.

5.3. OEb Deassertion

The OEb function is deasserted by pulling the pin high or writing the I²C OE bit to a logic low. The corresponding output is stopped cleanly and the final output state is driven low.

5.4. SA Pin

The SA functionality sets the Slave Address of the part. This address is latched to the value of the pin when the part initially powers up. See Table 8.1 SA State on First Application of PWRDNb on page 24 for the available addresses. By default, the internal $60 \text{ k}\Omega$ pull-up resistor will set SA to a value of 1. Never directly connect the SA pin to VDD or GND. To drive the pin low or high, use a $10 \text{ k}\Omega$ resistor.

5.5. PWRDNb (Power Down) Pin

When PWRDNb is pulled low, the device will be placed in power down mode. The assertion and deasertion of PWRDNb is asynchronous. This pin has a 100 k Ω internal pull-up.

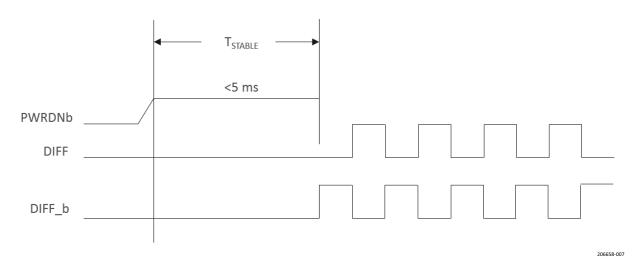


Figure 7. Initial Sample High of PWRDNb After Power Up

5.6. PWRDNb (Power Down) Assertion

The PWRDNb pin is an asynchronous active low input used to disable all output clocks in a glitch-free manner. In power down mode, all outputs and the I²C logic are disabled. All disabled outputs will be driven low.

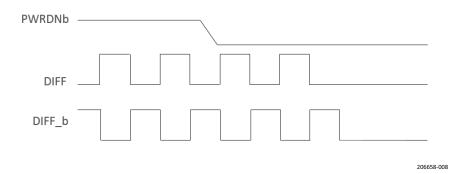


Figure 8. PWRDNb Assertion

5.7. PWRDNb (Power Down) Deassertion

When a valid rising edge on PWRGD/PWRDNb pin is applied, all outputs are enabled in a glitch-free manner within $520 \, \mu s$.

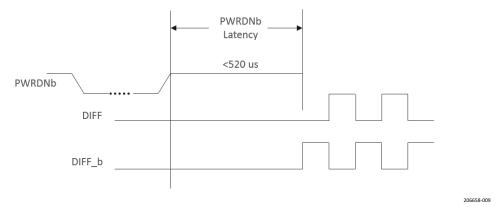
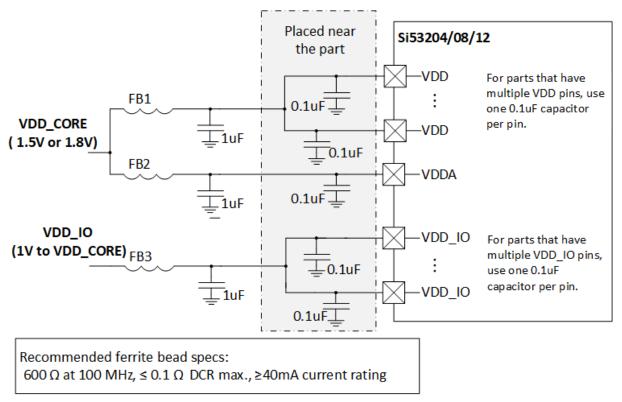



Figure 9. Subsequent Deassertion of PWRDNb

5.8. Power Supply Filtering Recommendations

206658-010

Figure 10. Power Supply Filtering

Separate out each type of VDD (VDD, VDDA, and VDD_IO) using ferrite beads. Then, for each VDD type, use one 1 uF bulk capacitor along with an additional 0.1 uF capacitor for each individual VDD pin. All VDD Core (VDD and VDDA) pins should be tied to the same voltage, either 1.8 V or 1.5 V. The VDD_IO pins can be tied to a voltage between 1 V and the selected VDD Core voltage.

NOTE: The VDD IO pins must all be tied to the same voltage.

6. Test and Measurement Setup

The following diagrams show the test load configuration for the differential clock signals.

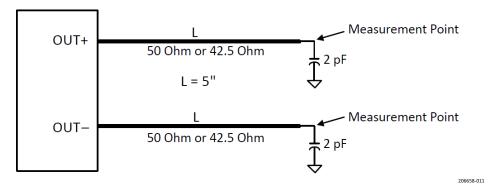


Figure 11. 0.7 V Differential Load Configuration

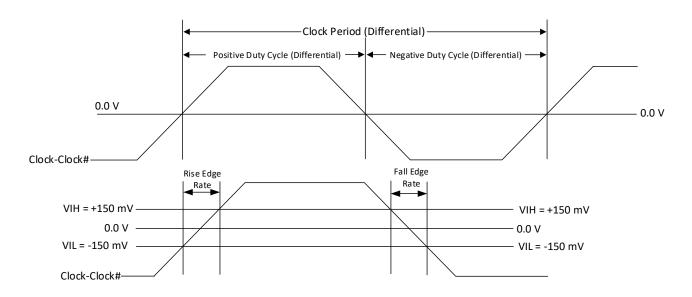


Figure 12. Differential Measurement for Output Signals (for AC Parameters Measurement)

206658-013

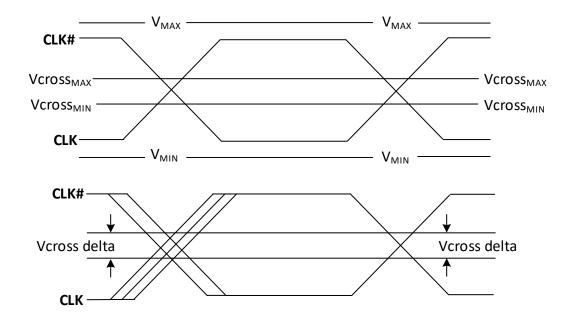


Figure 13. Single-Ended Measurement for Differential Output Signals (for AC Parameters Measurement)

7. PCIe Clock Jitter Tool

The PCIe Clock Jitter Tool is designed to enable users to quickly and easily take jitter measurements for PCIe Gen 1 through Gen 6 and SRNS/SRIS. This software removes all the guesswork for PCIe Gen 1 through Gen 6 and SRNS/SRIS jitter measurements and margins in board designs. This software tool will provide accurate results in just a few clicks, and is provided in an executable format to support various common input waveform files, such as .csv, .wfm, and .bin. The easy-to-use GUI and helpful tips guide users through each step. Release notes and other documentation are also included in the software package.

Download it for free at Timing - PCI Express Learning Center.

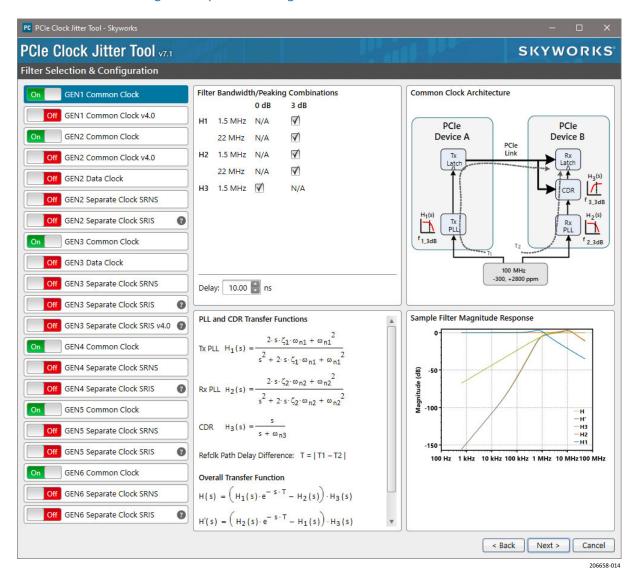


Figure 14. PCIe Clock Jitter Tool

8. Control Registers

8.1. I²C Interface

To enhance the flexibility and function of the clock synthesizer, an I²C interface is provided. Through the I2C interface, various device functions, such as individual clock output buffers, are individually enabled or disabled. The registers associated with the I²C interface initialize to their default setting at power-up. The use of this interface is optional. Clock device register changes are normally made at system initialization, if any are required.

8.2. Block Read/Write

The clock driver I²C protocol accepts block write and block read operations from the controller. For block write/read operation, access the bytes in sequential order from lowest to highest (most significant bit first) with the ability to stop after any complete byte is transferred. The block write and block read protocol is outlined in Table 10.

8.3. Block Read

After the slave address is sent with the R/W condition bit set, the command byte is sent with the MSB = 0. The slave acknowledges the register index in the command byte. The master sends a repeat start function. After the slave acknowledges this, the slave sends the number of bytes it wants to transfer (>0 and <7). The master acknowledges each byte except the last and sends a stop condition.



Figure 15. Block Read Protocol

8.4. Block Write

After the slave address is sent with the R/W condition bit not set, the command byte is sent with the MSB = 0. The lower seven bits indicate the register at which to start the transfer. If the command byte is 00h, the slave device will be compatible with existing block mode slave devices. The next byte of a block write must be the count of bytes that the master will transfer to the slave device. The byte count must be greater than zero and less than 7. Following this byte are the data bytes to be transferred to the slave device. The slave device always acknowledges each byte received. The transfer is terminated after the slave sends the Ack and the master sends a stop function.

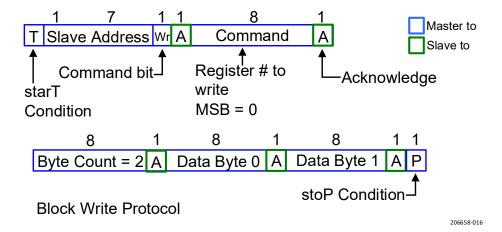


Figure 16. Block Write Protocol

8.5. Byte Read/Write

Reading or writing a register in an I²C slave device in byte mode always involves specifying the register number. Refer to Table XX Byte Read and Byte Write Protocol for byte read and byte write protocol.

8.6. Byte Read

The standard byte read is as shown in the figure below. It is an extension of the byte write. The write start condition is repeated; then, the slave device starts sending data, and the master acknowledges it until the last byte is sent. The master terminates the transfer with a Nack, then a stop condition. For byte operation, the MSB bit of the command byte must be set. For block operations, the MSB bit must be set low. If the bit is not set low, the next byte must be the byte transfer count.

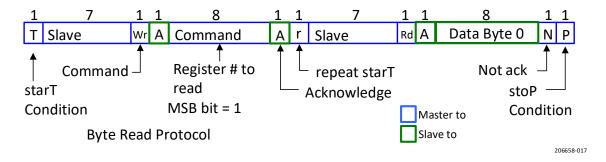


Figure 17. Byte Read Protocol

8.7. Byte Write

The figure below illustrates a simple, typical byte write. For byte operation, the MSB bit of the command byte must be set high. For block operations, the MSB bit must be set. If the bit is not set, the next byte must be the byte transfer count. The count can be between 1 and 32. It is not allowed to be zero or to exceed 32.

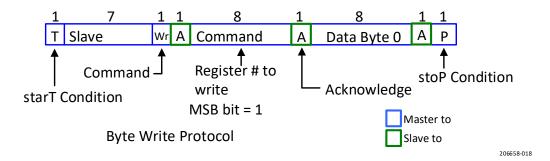


Figure 18. Byte Write Protocol

8.8. Data Protocol

The clock driver I2C protocol accepts byte write, byte read, block write, and block read operations from the controller. For block write/read operations, the system controller can access the bytes in sequential order from lowest to highest (most significant bit first) with the ability to stop after any complete byte is transferred. For byte write and byte read operations, the system controller can access individually indexed bytes. The block write and block read protocol is outlined in Table 10. The byte write and byte read protocol is provided in Table 10. SA is the address select for I²C. When the part is powered up, SA will be latched to select the I²C address.

Table 9. SA State on First Application of PWRDNb

Description	SA	Address
State of SA on first deassertion of PWRDNb	0	1101001
State of SA of first deassertion of 1 WKDNb	1	1101010

Table 10. Block Read and Block Write Protocol

Block	Write Protocol	Block Read Protocol		
Bit	Description	Bit	Description	
1	Start	1	Start	
8:2	Slave address—7 bits	8:2	Slave address–7 bits	
9	Write	9	Write	
10	Acknowledge from slave	10	Acknowledge from slave	
18:11	Command Code—8 bits	8 bits 18:11 Comma		
19	Acknowledge from slave	19	Acknowledge from slave	
27:20	Byte Count—8 bits	20	Repeat start	
28	Acknowledge from slave	27:21 Slave address–7 bi		

Table 10. Block Read and Block Write Protocol (Continued)

Block	Write Protocol	Bloc	k Read Protocol
Bit	Description	Bit	Description
36:29	Data byte 1–8 bits	28	Read = 1
37	Acknowledge from slave	29	Acknowledge from slave
45:38	Data byte 2–8 bits	37:30	Byte Count from slave–8 bits
46	Acknowledge from slave	38	Acknowledge
	Data Byte/Slave Acknowledges	46:39	Data byte 1 from slave–8 bits
	Data Byte N–8 bits	47	Acknowledge
	Acknowledge from slave	55:48	Data byte 2 from slave–8 bits
	Stop	56	Acknowledge
			Data bytes from slave/Acknowledge
			Data Byte N from slave–8 bits
			NOT Acknowledge
			Stop

Table 11. Byte Read and Byte Write Protocol

Byte Writ	e Protocol	Byte Rea	d Protocol
Bit	Description	Bit	Description
1	Start	1	Start
8:2	Slave address–7 bits	8:2	Slave address–7 bits
9	Write	9	Write
10	Acknowledge from slave	10	Acknowledge from slave
18:11	Command Code–8 bits	18:11	Command Code–8 bits
19	Acknowledge from slave	19	Acknowledge from slave
27:20	Data byte–8 bits	20	Repeated start
28	Acknowledge from slave	27:21	Slave address–7 bits
29	Stop	28	Read
		29	Acknowledge from slave
		37:30	Data from slave–8 bits
		38	NOT Acknowledge
		39	Stop

8.9. Register Tables

8.9.1. Si53212 Registers

Table 12. Si53212 Control Register 0. Byte 0

Bit	Name	If Bit = 0	If Bit = 1	Туре	Default	Function
7	DIFF7_OE	Disabled	Enabled	RW	1	Output enable for DIFF[7]
6	DIFF6_OE	Disabled	Enabled	RW	1	Output enable for DIFF[6]
5	DIFF5_OE	Disabled	Enabled	RW	1	Output enable for DIFF[5]
4	DIFF4_OE	Disabled	Enabled	RW	1	Output enable for DIFF[4]
3	DIFF3_OE	Disabled	Enabled	RW	1	Output enable for DIFF[3]
2	DIFF2_OE	Disabled	Enabled	RW	1	Output enable for DIFF[2]
1	DIFF1_OE	Disabled	Enabled	RW	1	Output enable for DIFF[1]
0	DIFF0_OE	Disabled	Enabled	RW	1	Output enable for DIFF[0]

Table 13. Si53212 Control Register 1. Byte 1

Bit	Name	If Bit = 0	If Bit = 1	Туре	Default	Function
7	DIFF11_OE	Disabled	Enabled	RW	1	Output enable for DIFF[11]
6	DIFF10_OE	Disabled	Enabled	RW	1	Output enable for DIFF[10]
5	DIFF9_OE	Disabled	Enabled	RW	1	Output enable for DIFF[9]
4	DIFF8_OE	Disabled	Enabled	RW	1	Output enable for DIFF[8]
3					0	
2		Reser	ved	0	Reserved	
1		Reser	veu	0	neser veu	
0				0		

Table 14. Si53212 Control Register 2. Byte 2

Reserved

Table 15. Si53212 Control Register 3. Byte 3

Bit	Name	If Bit = 0	If Bit = 1	Туре	Default	Function
7	SR_SEL_DIFF7	Slow setting	Fast setting	RW	1	Slew rate control for DIFF7
6	SR_SEL_DIFF6	Slow setting	Fast setting	RW	1	Slew rate control for DIFF6
5	SR_SEL_DIFF5	Slow setting	Fast setting	RW	1	Slew rate control for DIFF5
4	SR_SEL_DIFF4	Slow setting	Fast setting	RW	1	Slew rate control for DIFF4
3	SR_SEL_DIFF3	Slow setting	Fast setting	RW	1	Slew rate control for DIFF3
2	SR_SEL_DIFF2	Slow setting	Fast setting	RW	1	Slew rate control for DIFF2
1	SR_SEL_DIFF1	Slow setting	Fast setting	RW	1	Slew rate control for DIFF1
0	SR_SEL_DIFF0	Slow setting	Fast setting	RW	1	Slew rate control for DIFF0

Table 16. Si53212 Control Register 4. Byte 4

Bit	Name	If Bit = 0	If Bit = 1	Туре	Default	Function
7	SR_SEL_DIFF11	Slow setting	Fast setting	RW	1	Slew rate control for DIFF11
6	SR_SEL_DIFF10	Slow setting	Fast setting	RW	1	Slew rate control for DIFF10
5	SR_SEL_DIFF9	Slow setting	Fast setting	RW	1	Slew rate control for DIFF9
4	SR_SEL_DIFF8	Slow setting	Fast setting	RW	1	Slew rate control for DIFF8
3	AMP			RW	1	DIFF Differential Outputs Amplitude Adjust- ment.
2	AMP			RW	0	0110 : 600 mV
1	AMP			RW	0	0111 : 650 mV 1000 : 700 mV
0	АМР			RW	0	1001 : 750 mV 1010 : 800 mV 1011 : 850 mV

Table 17. Si53212 Control Register 5. Byte 5

Bit	Name	If Bit = 0	If Bit = 1	Туре	Default	Function
7				R	0	
6		Rev Code [7:4]		R	0	Revision Code
5	Rev Code [7:4]			R	0	Nevision code
4				R	0	
3				R	1	
2		Vendor ID [3:0]		R	0	Vendor Identification Code
1				R	0	venuer identification code
0				R	0	

Table 18. Si53212 Control Register 6. Byte 6

Bit	Name	If Bit = 0	If Bit = 1	Туре	Default	Function
7				R	0	
6				R	0	
5				R	0	
4	Dr	ogramming ID [7:	01	R	0	Programming ID (Internal Only)
3] ''	ogramming iD [7.	oj.	R	0	Trogramming ib (internal omy)
2				R	0	
1				R	0	
0				R	0	

8.9.2. Si53208 Registers

Table 19. Si53208 Control Register 0. Byte 0

Bit	Name	If Bit = 0	If Bit = 1	Туре	Default	Function
7		Rese	rved	0	Reserved	
6	DIFF4_OE	Disabled	Enabled	RW	1	Output enable for DIFF_4
5	DIFF3_OE	Disabled	Enabled	RW	1	Output enable for DIFF_3
4		Rese	rved		0	Reserved
3		Rese	rved		0	Reserved
2	DIFF2_OE	Disabled	Enabled	RW	1	Output enable for DIFF_2
1	DIFF1_OE	Disabled	Enabled	1	Output enable for DIFF_1	
0	DIFF0_OE	Disabled	Enabled	RW	1	Output enable for DIFF_0

Table 20. Si53208 Control Register 1. Byte 1

Bit	Name	If Bit = 0	If Bit = 1	Туре	Default	Function
7	DIFF7_OE	Disabled	Enabled	RW	1	Output enable for DIFF_7
6	DIFF6_OE	Disabled	Enabled	RW	1	Output enable for DIFF_6
5		Reser	ved		0	Reserved
4	DIFF5_OE	Disabled	Enabled	RW	1	Output enable for DIFF_5
3					0	
2		Reser	ved		0	Reserved
1		Kesei	veu	0	reserveu	
0				0		

Table 21. Si53208 Control Register 2. Byte 2

Reserved

Table 22. Si53208 Control Register 3. Byte 3

Bit	Name	If Bit = 0	If Bit = 1	Туре	Default	Function
7		Reserved		RW	1	Reserved
6	SR_SEL_DIFF_4	Slow setting	Fast setting	RW	1	Slew rate control for DIFF_4
5	SR_SEL_DIFF_3	Slow setting	Fast setting	RW	1	Slew rate control for DIFF_3
4		Reserved		RW	1	Reserved
3		Reserved		RW	1	Reserved
2	SR_SEL_DIFF_2	Slow setting	Fast setting	RW	1	Slew rate control for DIFF_2
1	SR_SEL_DIFF_1	Slow setting	Fast setting	RW	1	Slew rate control for DIFF_1
0	SR_SEL_DIFF_0	Slow setting	Fast setting	RW	1	Slew rate control for DIFF_0

Table 23. Si53208 Control Register 4. Byte 4

Bit	Name	If Bit = 0	If Bit = 1	Туре	Default	Function
7	SR_SEL_DIFF_7	Slow setting	Fast setting	RW	1	Slew rate control for DIFF_7
6	SR_SEL_DIFF_6	Slow setting	Fast setting	RW	1	Slew rate control for DIFF_6
5		Reserved		RW	1	Reserved
4	SR_SEL_DIFF_5	Slow setting	Fast setting	RW	1	Slew rate control for DIFF_5
3	AMP			RW	1	DIFF Differential Outputs Amplitude Adjustment.
2	AMP			RW	0	0110 : 600 mV
1	AMP			RW	0	0111 : 650 mV 1000 : 700 mV 1001 : 750 mV 1010 : 800 mV 1011 : 850 mV
0	АМР			RW	0	

Table 24. Si53208 Control Register 5. Byte 5

Bit	Name	If Bit = 0	If Bit = 1	Туре	Default	Function
7				R	0	
6		Rev Code [7:4]			0	Revision Code
5					0	Revision Code
4					0	
3				R	1	
2		Vendor ID [3:0]		R	0	Vendor Identification Code
1		veridor ib [3.0]		R	0	vendor identification code
0				R	0	

Table 25. Si53208 Control Register 6. Byte 6

Bit	Name	If Bit = 0	If Bit = 1	Туре	Default	Function
7				R	0	
6				R	0	
5	=			R	0	
4	, n	rogramming ID [7:	·01	R	0	Programming ID (Internal Only)
3	1	TOgramming ID [7.	.0]	R	0	Frogramming ib (internal omly)
2					0	
1				R	0	
0				R	0	

8.9.3. Si53204 Registers

Table 26. Si53204 Control Register 0. Byte 0

Bit	Name	If Bit = 0	If Bit = 1	Туре	Default	Function
7		Rese	rved	0	Reserved	
6	DIFF2_OE	Disabled	Enabled	RW	1	Output enable for DIFF_2
5	DIFF1_OE	Disabled	Enabled	RW	1	Output enable for DIFF_1
4		Rese	rved		0	Reserved
3		Rese	rved		0	Reserved
2	DIFF0_OE	Disabled	Enabled	RW	1	Output enable for DIFF_0
1		Reserved		RW	0	Reserved
0		Reserved		RW	0	Reserved

Table 27. Si53204 Control Register 1. Byte 1

Bit	Name	If Bit = 0	If Bit = 1	Туре	Default	Function
7		Reser	ved	0	Reserved	
6		Reser	ved		0	Reserved
5		Reser	ved		0	Reserved
4	DIFF3_OE	Disabled	Enabled	RW	1	Output enable for DIFF_3
3					0	
2		Reser	wod		0	Reserved
1		Kesei	veu	0	- Reserveu	
0					0	

Table 28. Si53204 Control Register 2. Byte 2

Reserved

Table 29. Si53204 Control Register 3. Byte 3

Bit	Name	If Bit = 0	If Bit = 1	Туре	Default	Function
7		Reserved		RW	1	Reserved
6	SR_SEL_DIFF_2	Slow setting	Fast setting	RW	1	Slew rate control for DIFF_2
5	SR_SEL_DIFF_1	Slow setting	Fast setting	RW	1	Slew rate control for DIFF_1
4		Reserved		RW	1	Reserved
3		Reserved		RW	1	Reserved
2	SR_SEL_DIFF_0	Slow setting	Fast setting	RW	1	Slew rate control for DIFF_0
1		Reserved		RW	1	Reserved
0		Reserved		RW	1	Reserved

Table 30. Si53204 Control Register 4. Byte 4

Bit	Name	If Bit = 0	If Bit = 1	Туре	Default	Function
7		Reserved		RW	1	Reserved
6		Reserved		RW	1	Reserved
5		Reserved		RW	1	Reserved
4	SR_SEL_DIFF_3	Slow setting	Fast setting	RW	1	Slew rate control for DIFF_3
3	AMP			RW	1	DIFF Differential Outputs Amplitude Adjustment.
2	AMP			RW	0	0110 : 600 mV
1	AMP			RW	0	- 0111 : 650 mV 1000 : 700 mV
0	АМР			RW	0	1001 : 750 mV 1010 : 800 mV 1011 : 850 mV

Table 31. Si53204 Control Register 5. Byte 5

Bit	Name	If Bit = 0	If Bit = 1	Туре	Default	Function
7				R	0	
6		Pov Codo [7:4]		R	0	Revision Code
5	Rev Code [7:4]			R	0	Nevision code
4				R	0	
3	Vendor ID [3:0]			R	1	
2				R	0	Vendor Identification Code
1				R	0	vendor identification code
0					0	

Table 32. Si53204 Control Register 6. Byte 6

Bit	Name	If Bit = 0	If Bit = 1	Туре	Default	Function
7				R	0	
6				R	0	Programming ID (Internal Only)
5				R	0	
4	Di	Programming ID [7:0]			0	
3	rı				0	Programming 10 (internal only)
2				R	0	
1				R	0	
0				R	0	

9. Packaging

35

9.1. Si53212 Package

The figure below illustrates the package details for the Si53212 in a 64-Lead 9 x 9 mm QFN package. The table lists the values for the dimensions shown in the illustration.

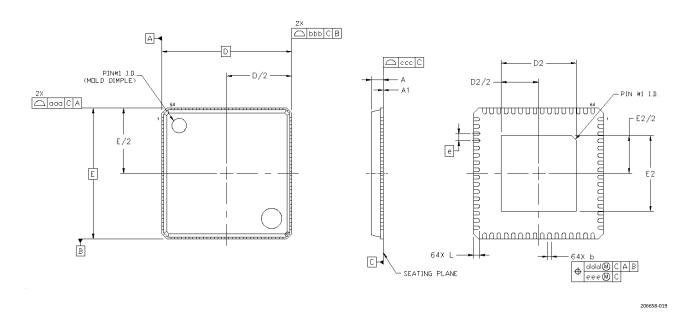


Figure 19. Si53212 Package Diagram

Table 33. Si53212 Package Dimensions

Dimension	Min	Nom	Max	Notes
А	0.80	0.85	0.90	
A1	0.00	0.02	0.05	
b	0.18	0.25	0.30	
D		9.00 BSC		
D2	5.10	5.20	5.30	All dimensions shown are in millimeters (mm) unless
е		0.50 BSC		otherwise noted.
E		9.00 BSC		Dimensioning and Tolerancing per ANSI Y14.5M-1994.
E2	5.10	5.20	5.30	This drawing conforms to JEDEC Outline MO-220.
L	0.30	0.40	0.50	Recommended card reflow profile is per JEDEC/IPC J-
aaa		0.15		STD-020D specification for Small Body Components.
bbb	0.10			
ссс	0.08			
ddd	0.10			
eee		0.05		

9.2. Si53212 Land Pattern

The following figure illustrates the land pattern details for the Si53212 in a 64-Lead 9 x 9 mm QFN package. The table lists the values for the dimensions shown in the illustration.

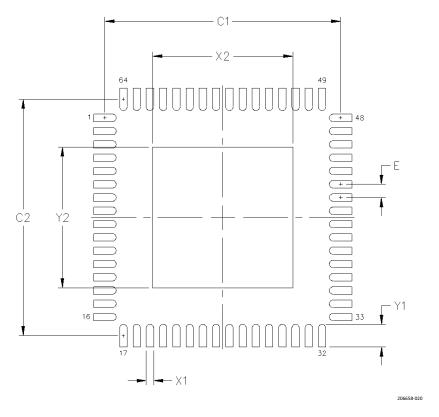


Figure 20. Si53212 Land Pattern

Table 34. Si53212 PCB Land Pattern Dimensions

Dimension	mm	Notes
C1	8.90	General All dimensions shown are in millimeters (mm). This Land Pattern Design is based on the IPC-7351 guidelines.
C2	8.90	All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a fabrication allowance of 0.05 mm.
E	0.50	Solder Mask Design All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 mm minimum, all the way around the pad.
X1	0.30	Stencil Design A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
Y1	0.85	The stencil thickness should be 0.125 mm (5 mils). The ratio of stencil aperture to land pad size should be 1:1 for all pads. A 3x3 array of 1.25 mm square openings on a 1.80 mm pitch should be used for the center
X2	5.30	ground pad. Card Assembly
Y2	5.30	A No-Clean, Type-3 solder paste is recommended. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

9.3. Si53212 Top Markings

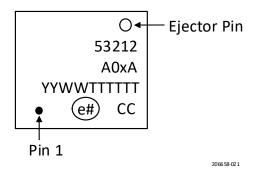


Figure 21. Si53212 Top Marking

Table 35. Si53212 Top Marking Explanation

Line	Characters	Description
1	53212	Device part number
2		Device part number $x=1$ = Internal $100~\Omega$ impedance matching $x=2$ = Internal $85~\Omega$ impedance matching
3	YYWWTTTTT	YY = Assembly year WW = Assembly work week TTTTTT = Manufacturing trace code
4		e# = Lead finish symbol. # is a number CC = Country of origin (ISO abbreviation)

9.4. Si53208 Package

The figure below illustrates the package details for the Si53208 in a 48-Lead 6 x 6 mm QFN package. The table lists the values for the dimensions shown in the illustration.

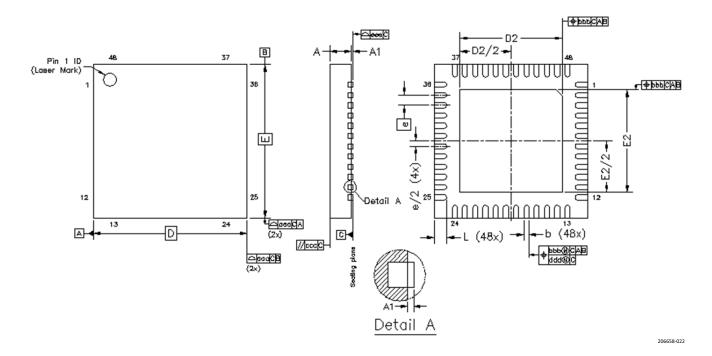


Figure 22. Si53208 Package Diagram

Table 36. Si53208 Package Dimensions

Dimension	Min	Nom	Max	Notes
А	0.80	0.85	0.90	
A1	0.00	0.02	0.05	
b	0.15	0.20	0.25	
D		6.00 BSC		
D2	3.5	3.6	3.7	All dimensions shown are in millimeters (mm) unless otherwise noted.
е		0.40 BSC		otherwise noted.
E		6.00 BSC		Dimensioning and Tolerancing per ANSI Y14.5M-1994.
E2	3.5	3.6	3.7	This drawing conforms to JEDEC Outline MO-220.
L	0.30	0.40	0.50	Recommended card reflow profile is per JEDEC/IPC J-
aaa		0.10		STD-020 specification for Small Body Components.
bbb	0.10			
ссс	0.10			
ddd	0.05			
eee		0.08		

9.5. Si53208 Land Pattern

The figure below illustrates the land pattern details for the Si53208 in a 48-Lead, 6 x 6 mm QFN package. The table lists the values for the dimensions shown in the illustration.

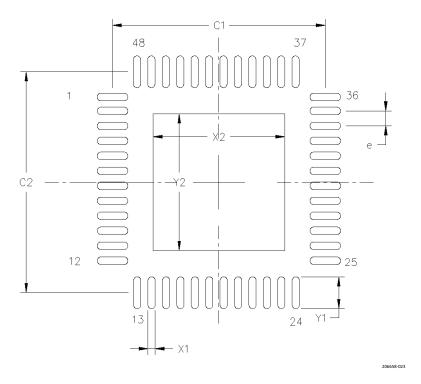


Figure 23. Si53208 Land Pattern

Table 37. Si53208 PCB Land Pattern Dimensions

Dimension	mm	Notes
C1	5.90	General All dimensions shown are in millimeters (mm) unless otherwise noted. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.
C2	5.90	This Land Pattern Design is based on IPC-7351 guidelines. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm.
X1	0.20	Solder Mask Design All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the
X2	3.60	metal pad is to be 60 mm minimum, all the way around the pad. Stencil Design
Y1	0.85	A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. The stencil thickness should be 0.125 mm (5 mils).
Y2	3.60	The ratio of stencil aperture to land pad size should be 1:1 for the perimeter pads. A 3x3 array of 0.90 mm square openings on 1.15mm pitch should be used for the center ground pad.
e	0.40 BSC	Card Assembly A No-Clean, Type-3 solder paste is recommended. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

9.6. Si53208 Top Markings

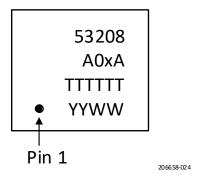


Figure 24. Si53208 Top Marking

Table 38. Si53208 Top Marking Explanation

Line	Characters	Description
1	52208	Device part number
2	A0xA	Device part number $x=1$ = Internal $100~\Omega$ impedance matching $x=2$ = Internal $85~\Omega$ impedance matching
3	ттттт	TTTTTT = Manufacturing trace code
4	YYWW	YY = Assembly year WW = Assembly work week

9.7. Si53204 Package

The figure below illustrates the package details for the Si53204 in a 32-Lead, 5 x 5 mm QFN package. The table lists the values for the dimensions shown in the illustration.

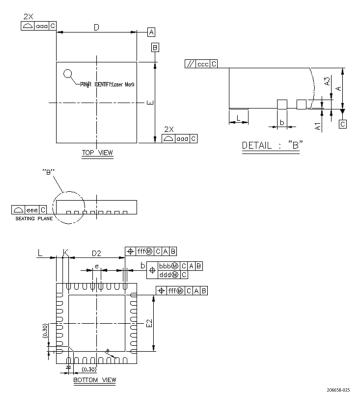


Figure 25. Si53204 Package Diagram

Table 39. Si53204 Package Dimensions

Dimension	Min	Nom	Max	Notes
Α	0.80	0.85	0.90	
A1	0.00	0.02	0.05	
A3		0.20 REF		
b	0.18	0.25	0.30	
D/E	4.90	5.00	5.10	All dimensions shown are in millimeters (mm) unless
D2/E2	3.40	3.50	3.60	otherwise noted.
E		0.50 BSC		Dimensioning and Tolerancing per ANSI Y14.5M-1994.
K	0.20	_	_	Difficusioning and folerancing per ANSI 114.5W-1994.
L	0.30	0.40	0.50	This drawing conforms to the JEDEC Solid State Outline MO-220, Variation VKKD-4.
R	0.09	_	0.14	IVIO-220, Variation VKKD-4.
aaa		0.15		Recommended card reflow profile is per JEDEC/IPC J- STD-020 specification for Small Body Components.
bbb		0.10		31D-020 specification for Small Body Components.
ссс	0.10			
ddd	0.05			
eee	0.08			
fff		0.10		

9.8. Si53204 Land Pattern

The figure below illustrates the land pattern details for the Si53204 in a 32-Lead, 5 x 5 mm QFN package. The table lists the values for the dimensions shown in the illustration.

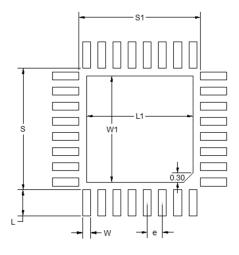


Figure 26. Si53204 Land Pattern

Table 40. Si53204 PCB Land Pattern Dimensions

Dimension	mm	Notes
S1	4.01	General All dimensions shown are in millimeters (mm) unless otherwise noted.
S	4.01	This Land Pattern Design is based on IPC-7351 guidelines. Solder Mask Design
L1	3.50	All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 mm minimum, all the way around the pad.
W1	3.50	Stencil Design A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
e	0.50	The stencil thickness should be 0.125mm (5 mils). The ratio of stencil aperture to land pad size can be 1:1 for all perimeter pads. A 3x3 array of 0.85 mm square openings on 1.00 mm pitch can be used for the center ground pad.
W	0.26	Card Assembly A No-Clean, Type-3 solder paste is recommended.
L	0.86	The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

9.9. Si53204 Top Markings

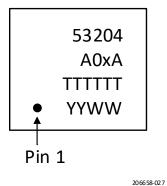


Figure 27. Si53204 Top Marking

Table 41. Si53204 Top Marking Explanation

Line	Characters	Description
1	52204	Device part number
2	A0xB	Device part number $x=1$ = Internal $100~\Omega$ impedance matching $x=2$ = Internal $85~\Omega$ impedance matching
3	ттттт	TTTTTT = Manufacturing trace code
4		YY = Assembly year WW = Assembly work week

10. Ordering Information

Table 42. Si532x Ordering Guide

Number of Outputs	Internal Termination	Part Number	Package Type	Temperature
	100 Ω	Si53212-A01AGM	64-QFN	Extended, –40 to 85 °C
12-output	100 12	Si53212-A01AGMR	64-QFN - Tape and Reel	Extended, –40 to 85 °C
12-output	85 Ω	Si53212-A02AGM	64-QFN	Extended, –40 to 85 °C
	9377	Si53212-A02AGMR	64-QFN - Tape and Reel	Extended, –40 to 85 °C
	100 Ω	Si53208-A01AGM	48-QFN	Extended, –40 to 85 °C
9 output		Si53208-A01AGMR	48-QFN - Tape and Reel	Extended, –40 to 85 °C
8-output	85 Ω	Si53208-A02AGM	48-QFN	Extended, –40 to 85 °C
		Si53208-A02AGMR	48-QFN - Tape and Reel	Extended, –40 to 85 °C
	100 Ω	Si53204-A01AGM	32-QFN	Extended, –40 to 85 °C
4 output		Si53204-A01AGMR	32-QFN - Tape and Reel	Extended, –40 to 85 °C
4-output	85 Ω	Si53204-A02AGM	32-QFN	Extended, –40 to 85 °C
	0.50	Si53204-A02AGMR	32-QFN - Tape and Reel	Extended, –40 to 85 °C

10.1. Technical Support

Table 43. Technical Support URLs

PCIe Clock Jitter Tool	https://www.skyworksinc.com/en/Products/Timing
PCIe Learning Center	https://www.skyworksinc.com/en/application-pages/pci-express-learning-center
Development Kit	https://www.skyworksinc.com/en/products/timing/evaluation-kits/clock/si52204-evaluation-kit

11. Revision History

Revision	Date	Description
А	July, 2023	Updated all references to PCle Gen 1 through Gen 5 to Gen 1 to Gen 6
1.0	March, 2019	 Updated pin descriptions, electrical specifications, functional descriptions, and test and measurement Setup Added control registers

Copyright © 2021-2023, Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks' Terms and Conditions of Sale.

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of Skyworks' published specifications or parameters.

Skyworks, the Skyworks symbol, Sky5°, SkyOne°, SkyBlue™, Skyworks Green™, ClockBuilder°, DSPLL°, ISOmodem°, ProSLIC°, SiPHY°, and RFelC° are trademarks or registered trademarks of Skyworks Solutions, Inc. or its subsidiaries in the United States and other countries. Third-party brands and names are for identification purposes only and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.