SKYWORIS

Si5332 Reference Manual

The Si5332 is a high-performance, low-jitter clock generator capable of synthesizing five independent banks of user-programmable clock frequencies up to 333.33 MHz , while providing up to 12 differential or 24 single-ended output clocks. The Si 5332 supports free run operation using an external crystal, or optional internal crystal, as well as lock to an external clock signal. The output drivers are configurable to support common signal formats, such as LVPECL, LVDS, HCSL, and LVCMOS. Separate output supply pins allow supply voltages of $3.3,2.5,1.8 \mathrm{~V}$ and 1.5 V (CMOS only) to power the multi-format output drivers. The core voltage supply (VDD) accepts $3.3,2.5$, or 1.8 V and is independent from the output supplies (VDDOs). Using its two-stage synthesis architecture and patented high-resolution Multisynth technology, the Si5332 can generate three fully independent / non-harmonically-related bank frequencies from a single input frequency.

KEY FEATURES

- Any-Frequency 6/8/12-output programmable clock generators
- Offered in three different package sizes, supporting different combinations of output clocks and user configurable hardware input pins
- 32-pin QFN/LGA, up to 6 outputs
- 40-pin QFN/LGA, up to 8 outputs
- 48-pin QFN/LGA, up to 12 outputs
- Multisynth technology enables any frequency synthesis on any output up to 250 MHz
- Highly configurable output path featuring a cross point mux
- Up to three independent fractional synthesis output paths
- Up to five independent integer dividers
- Down and center spread spectrum
- Embedded 50 MHz crystal option
- Input frequency range:
- External crystal: 16 to 50 MHz
- Embedded crystal: 50 MHz
- Differential clock: 10 to 250 MHz
- LVCMOS clock: 10 to 170 MHz
- Output frequency range:
- Differential: 5 to 312.5 MHz
- LVCMOS: 5 to 170 MHz
- User-configurable clock output signal format per output: LVDS, LVPECL, HCSL, LVCMOS
- Easy device configuration using our ClockBuilder Pro ${ }^{\text {TM }}$ (CBPro) software tool available for download from our web site
- Temperature range: -40 to $+85^{\circ} \mathrm{C}(\mathrm{L}$ grade: +25 C to +85 C)
- Pb-free, RoHS-6 compliant
- For more information, refer to the Si5332 data sheet

Table of Contents

1. Overview 4
2. Power Supply Sequencing 5
3. Input Clocks. 6
3.1 Input Clock Terminations 6
3.1.1 External Crystal (Si5332A/B/C/D) 6
3.1.2 Internal Crystal (Si5332E/F/G/H/L) 6
3.1.3 External Input Clock on XA Input (Si5332A/B/C/D) 6
3.1.4 External Input Clock on CLKIN_x/CLKIN_x\# 7
3.2 Crystal Recommendations 9
4. GPI 12
5. Output Clock Terminations 13
5.1 DC-Coupled Output Clock Terminations 14
5.2 AC-Coupled Clock Terminations 17
6. $I^{2} \mathrm{C}$ Configuration Download into a Blank Device (or Blank Profile in Multi-Profile Device) 18
6.1 RAM-based Configuration Restrictions 18
6.1.1 GPIO Pin Configurations 18
6.1.2 External Crystal 18
6.2 CBPro Project Creation 19
6.3 CBPro Register File Preparation 20
$6.41^{2} \mathrm{C}$ Download Process 21
6.5 Example CSV Export File (with Explanatory Notations) 22
6.6 Example C Code Header File 23
7. Programming the Volatile Memory 24
7.1 Programming the PLL 25
7.2 Programming the Clock Path 28
7.3 Programming the Output Clock Frequency 30
7.4 Programming the Output Clock Format. 31
7.5 Programming for Frequency Select Operations 33
7.6 Programming for Spread Spectrum 34
8. Si5332 Pinout and Package Variant 36
9. Recommended Schematic and Layout Practices 38
10. Register Map 39
11. Si5332 Common Registers 40
12. Si5332 32-QFN Specific Registers 49
13. Si5332 40-QFN Specific Registers 54
14. Si5332 48-QFN Specific Registers . 60

1. Overview

In addition to clock generation, the input clocks can bypass the synthesis stage enabling the Si5332 to be used as a high-performance clock buffer or a combination of a buffer and generator. The Multisynth dividers have two sets of divide ratio registers, an A set and a B set. The active in-use divide ratio can be switched between the A set or B set via external input pin or register control. This feature allows for dynamic frequency shifting at ppb accuracy for applications such as frequency margining. Similar A set and B set divider ratios are available for the integer dividers, but the ratios must be integer related. CBPro supports use of A and B divider sets. Spread spectrum is available for any clock output from two Multisynth dividers for use in EMI-sensitive applications, such as PCI Express. Configurations and controls of the Si 5332 are mainly handled through $I^{2} \mathrm{C}$. Any GPI pin can be programmed to be clock input select, frequency A / B select, spread enable, output enable, or $I^{2} C$ address select.

2. Power Supply Sequencing

The Si5332 VDD_core voltages are VDD_DIG, VDD_XTAL and VDDA. These 3 VDD_core pins must all use the *same* voltage. Power supply sequencing between VDD_core and any VDDOx pin is allowed in any order. However, to minimize the "bring up" time, it is recommended that VDD_core is powered up first, this ensures that the NVM download is completed first. The register bit field "VDD_XTAL_OK" is set to indicate input buffer(s) and crystal oscillator are powered up. Once the appropriate VDDOx supplies are powered-up, the VDDO_OK register field will indicate output driver bank supply voltage status. These status registers are available to provide an indication of general device status and presence of output driver voltages. The figure below shows the Si5332 device power-up sequencing and expected device behavior. Note that a blank (unconfigured) part will stop and wait to be configured with outputs disabled.

Figure 2.1. Power Supply Sequencing for Si5332

3. Input Clocks

The Si5332 has three input clock nodes, the XA/XB pair, the CLKIN_2/CLKIN_2\# pair and the CLKIN_3/CLKIN_3\# pair.
XA/XB supports a crystal input or an external clock input whereas the CLKIN_x/CLKIN_x\# pairs support ONLY external clock inputs. The GPI pins can be set to select the active input clock for the PLL (or the user can set the active input via register writes).

3.1 Input Clock Terminations

Supported input clock sources for the Si5332 are:

1. External crystal attached to the Si5332 XA/XB inputs (Si5332A/B/C/D only).
2. Internal crystal ($\mathrm{Si} 5332 \mathrm{E} / \mathrm{F} / \mathrm{G} / \mathrm{H} / \mathrm{L}$ only).
3. External single-ended clock attached to XA (Si5332A/B/C/D only).
4. Externally supplied clock attached to available CLKIN_x/CLKINx\# inputs.

3.1.1 External Crystal (Si5332A/B/C/D)

An external crystal can be connected to a Si5332A/B/C/D device's XA/XB inputs as shown below. See section 3.2 for a list of recommended crystals, or see Table 5.4 in the Si5332 datasheet for crystal specifications when selecting a different crystal. Note the external crystal specifications in Si5332 datasheet Table 5.4 must be met.

Figure 3.1. External Crystal Connection

3.1.2 Internal Crystal (Si5332E/F/G/H/L)

An internal crystal option is available by selecting the $\mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}$, or L variant of the Si 5332 . The internal crystal is a fixed 50 MHz crystal. No external crystal or other components should be connected to the XA/XB pins and the pins should not have signals routed next to or underneath. For layout purposes, the XA/XB pins should be treated as if the crystal is attached.

3.1.3 External Input Clock on XA Input (Si5332A/B/C/D)

The XA input can accept an externally supplied, AC coupled clock with maximum voltage swing of 1 Vpp . See figure below for connection details. The XB pin must be left open with nothing connected. If using this input clock mode, it is suggested to zero-out the internal crystal loading capacitance (CL) for best operation.

Figure 3.2. External Input Clock on XA Input

3.1.4 External Input Clock on CLKIN_x/CLKIN_x\#

When supplying clocks into the CLKINx inputs, ac coupling is the preferred method for both differential and single-ended clocks with dc coupling an option in certain configurations. See Table 3.1 Si5332 Input Clock Coupling Restrictions (AC or DC) on page 8 for acand dc-coupled input clock restrictions.

The figures below show how to connect either a differential or single-ended input clock to the Si5332 clock inputs.

Figure 3.3. AC-coupled Differential Input Clock (LVDS, LVPECL, HCSL, CML, etc.)

For AC-coupled differential input clocks the Vswing of the clock must be limited to the maximum VDD_Core voltage. VDD_Core is defined as the following group of VDD supply pins: VDD_DIG, VDDA, and VDD_XTAL. (Format Termination: Input clock format termination is dependent on the driver format used and is usually specified by the driving device and/or industry standard clock format specification. The CLKIN inputs of Si 5332 are high-impedance inputs.)

Note: The differential ac-coupling capacitors can be placed either before or after the Format Termination as required by the clock source. Contact Skyworks technical support with any concerns or questions regarding input clock termination.

Figure 3.4. AC-coupled Single-ended Input Clock (LVCMOS)

Figure 3.5. DC-coupled Single-ended Input Clock (LVCMOS)

For ac- or dc-coupled single-ended LVCMOS inputs, the CBPro input clock mode must be set for LVCMOS and the applied input clock must meet datasheet input clock specifications for LVCMOS inputs including not exceeding maximum VDD_Core voltage. VDD_Core is defined as the following group of VDD supply pins: VDD_DIG, VDDA, and VDD_XTAL. (Format Termination: Input clock format termination is dependent on the driver format used and is usually specified by the driving device and/or industry standard clock format specification. The CLKIN inputs of Si5332 are high impedance inputs.)

For dc-coupled differential input clocks, refer to Table 3.1 Input Clock Coupling Restrictions on page 8 to determine if dc coupling is supported. (Format Termination: Input clock format termination is dependent on the driver format used and is usually specified by the driving device and/or industry standard clock format specification. The CLKIN inputs of Si5332 are high impedance inputs.)

Table 3.1. Si5332 Input Clock Coupling Restrictions (AC or DC)

Format	VDD_Core		
	3.3 V	2.5 V	1.8 V
LVDS $3.3 \mathrm{~V} / 2.5 \mathrm{~V}$	AC or DC	AC only	AC only
LVDS 1.8 V	AC or DC	AC only	AC only
LVPECL $3.3 \mathrm{~V} / 2.5 \mathrm{~V}$	AC or DC	AC only	AC only
HCSL	AC or DC	AC or DC	AC only
CML	AC only	AC only	AC only
LVCMOS	AC or DC		
1. For dc-coupled, input clock peak voltage must not exceed VDD_Core and minimum voltage must not be below GND.			
2. For ac-coupled, peak swing must not exceed VDD_Core.			

3.2 Crystal Recommendations

The crystals in the table below are recommended for use with Si5332. The crystals listed are 25 and 27 MHz frequencies. However, when choosing any crystal frequency between $16-30 \mathrm{MHz}$, a crystal with with ESR less than (or equal to) 50Ω and CL less than (or equal to) 20 pF can be used with Si 5332 . When choosing crystals of $31-50 \mathrm{MHz}$ frequencies, C 0 should not exceed 2 pF , CL should not exceed 10 pF and the ESR should not exceed 50Ω.

Table 3.2. Recommended Crystals

Crystal Part Number	Make	Stability	CL	ESR
ECS-25-18-30B-AKN	ECS	30ppm	18pf	30Ω
ECS-27-18-30B-AKN		30ppm	18pf	30Ω
FOXSDLF/250FR-20	Fox	30ppm	20pf	30Ω
FA-238V-25.000000MHz12.0+15.0-15.0	Epson	50ppm	12pf	50Ω
ABM3B-25.000MHz-18-50-D1U	Abracon	20ppm	18pf	50Ω
ABM3B-27.000MHz-18-50-D1U		20ppm	18pf	50Ω
ABM3B-25.000MHz-18-60-D1U		30ppm	18pf	60Ω
ABM3B-27.000MHz-18-60-D1U		30ppm	18pf	60Ω
ABM3B-25.000MHz-12-50-D1U		10ppm	10pf	50Ω
ABM3B-27.000MHz-12-50-D1U		10ppm	10pf	50Ω
AA-25.000MALE-T	TXC	30ppm	12pf	50Ω
AA-27.000MAGK-T		30ppm	20pf	50Ω
FQ5032B-25.000	Fox	30ppm	20pf	50Ω
FQ5032B-27.000				
NX5032GA-25.000M-STD-CSK-4	NDK	30ppm	8pf	50Ω
NX5032GA-25.000000MHZ-LN-CD-1		30ppm	8pf	70Ω
NX5032GA-27M-STD-CSK-4		30ppm	8pf	50Ω
NX5032GA-27.000000MHZ-LN-CD-1		30ppm	8pf	70Ω
7A-25.000MAAE	TXC	30ppm	12pf	50Ω
7A-25.000MAAJ		30ppm	18pf	50Ω
7A-27.000MAAE		30ppm	12pf	50Ω
7A-27.000MAAJ		30ppm	18pf	50Ω

Crystals will resonate at their specified frequency (i.e., be "on-frequency") if the capacitive loading across the crystal's terminals is the same as specified by the crystal loading capacitance (CL) specification. The total loading capacitance presented to the crystal must factor in all capacitance sources such as parasitic "stray" capacitance as well as added loading capacitance. Stray capacitance comes from sources like PCB traces, capacitive coupling to nearby components, as well as any stray capacitance within the oscillator device itself. For "on-frequency" oscillator operation, all capacitance sources must be considered to determine the correct total capacitance presented to the crystal to match it's required CL.

The Si5332 contains variable internal loading capacitors (CLVAR) to provide any necessary added crystal matching capacitance so external matching capacitors are not needed. The figure below shows the Si5332's internal variable capacitance and the two sources of stray loading capacitance.

Figure 3.6. Sources of Crystal Loading Capacitance
Using the Si5332's internal variable loading capacitors (CLVAR), the crystal's required CL can be matched by adding capacitance to the external stray and internal device capacitance. The total stray capacitance must be less than the required crystal loading capacitance $C L$. A value for $C L_{\text {VAR }}$ must be selected such that:

$$
\text { Crystal CL }=C L_{V A R}+C L S_{I N T}+C L S_{E X T}
$$

Or rearranged:

$$
C L_{V A R}=C r y s t a l C L-C L S_{I N T}-C L S_{E X T}
$$

Equation 1.

The crystal CL value is specified by the choice of crystal. A list of Si 5332 recommended crystals can be found in Table 3.2 on page 9 of this document. For the following example, a Crystal CL value of 10 pf will be used.

The internal stray capacitance (CLS $_{\mathrm{INT}}$) of the Si 5332 is 2.4 pf . External PCB stray capacitance ($C L S_{\mathrm{EXT}}$) is usually in the order of $2-3$ pf given a reasonably compact layout. The Si5332 EVB external stray capacitance is ~ 2.75 pf. Given these example values, the required $C_{V A R}$ can be calculated as shown below, using Equation 1.

$$
C L_{V A R}=10 p F-2.4 p F-2.75 p F=4.85 p F
$$

Equation 2.

Note the internal variable capacitor, $C_{\text {VAR }}$, consists of two capacitors in series: one connected to the $X A$ pin ($C L_{X A}$) and one to the $X B$ pin $\left(C L_{X B}\right)$ of the $S i 5332$. For capacitors in series, if we keep $C L_{X A}=C L_{X B}$, we can simply double the value of $C L_{V A R}$ to arrive at the correct $\mathrm{CL}_{\mathrm{XA}}$ and $\mathrm{CL}_{\mathrm{XB}}$ value.
$C L_{X A}=C L_{X B}=\left(2 \times C L_{V A R}\right)=2 \times 4.85 p F=9.7 p F$

Equation 3.

Combining Equation 1 and Equation 2 will solve for $\mathrm{CL}_{X A} / \mathrm{CL}_{\mathrm{XB}}$ in single equation form:
$C L_{X A}=C L_{X B}=2 \times\left(C r y s t a l C L-C L_{\text {int }}-C L_{\text {ext }}\right)$

Equation 4.

Note: Valid range for $C L_{X A}$ and $C L_{X B}$ in Si 5332 is 0 to 38.395 pF
$C L_{X A}$ and $C L_{X B}$ may only be a positive value and in the range of 0 to 38.395 pF . Any values less than 0 cannot be implemented and any values greater than 38.395 pF cannot be implemented using internal capacitors alone. (Note that the above range is NOT simply the crystal CL spec because both external and internal stray capacitance play a role in determining valid $\mathrm{CL}_{\mathrm{XA}} / \mathrm{CL}_{\mathrm{XB}}$.)

Once $C L_{X A}$ and $C L_{X B}$ have been determined using Equation 4, use the following set of formulas to calculate the required register values to implement the desired $C L_{X A} / C L_{X B}$.

If ($\mathrm{CL}_{\text {XA/XB }} \leq 30.555 \mathrm{pF}$, then:

- xosc_cint_ena $=0$
- xosc_ctrim_xin = Round to nearest integer (CLXA / 0.485)
- xosc_ctrim_xout = Round to nearest integer ($\mathrm{CL}_{\mathrm{XB}}$ / 0.485)

If ($30.555 \mathrm{pF}<\mathrm{CL}_{\mathrm{XA} / \mathrm{XB}} \leq 38.395 \mathrm{pF}$, then:

- xosc_cint_ena $=1$
- xosc_ctrim_xin = Round to nearest integer ((CL XA -7.84$)$ / 0.485)
- xosc_ctrim_xout $=$ Round to nearest integer $\left.\left(C_{\text {xB }}-7.84\right) / 0.485\right)$

To summarize, use Equation 4 to calculate $C L_{X A} / C L_{X B}$, then use the above set of formulas to calculate register values to implement $\mathrm{CL}_{\mathrm{XA}} / \mathrm{CL}_{\text {XB }}$ in the Si 5332 .

Note: Your unique PCB assembly's stray capacitance value plays a role in determining correct internal capacitor settings and, consequently, the crystal's frequency of oscillation. Small differences in actual board stray capacitance values from the value used in the above calculations will result in the crystal oscillating slightly off-frequency. Significant capacitance differences can result in significant frequency error.

4. GPI

The General-purpose inputs (GPI pins) are pins whose input functions can be programmed (in NVM) to assume a pre-defined function. The Si5332 provides users the following options for each GPI pin available for programming.

A general-purpose input can be programed as one of the following pins:
Table 4.1. GPI Programming Guide

Function Name	Description
OE_0	Output enable input for OUT0
OE_1	Output enable input for OUT1
OE_2	Output enable input for OUT2
OE_3	Output enable input for OUT3
OE_4	Output enable input for OUT4
OE_5	Output enable input for OUT5
OE_6	Output enable input for OUT6
OE_7	Output enable input for OUT7
OE_8	Output enable input for OUT8
OE_9	Output enable input for OUT9
OE_10	Output enable input for OUT10
OE_11	Output enable input for OUT11
SSE_0	Spread spectrum control for outputs derived from N0
SSE_1	Spread spectrum control for outputs derived from N1
FS_N0	Frequency select for outputs derived from N0
FS_N1	Frequency select for outputs derived from N1
FS_O0	Frequency select for outputs derived from O 0
FS_O1	Frequency select for outputs derived from O 1
FS_O2	Frequency select for outputs derived from O 2
FS_O3	Frequency select for outputs derived from O 3
FS_O4	Frequency select for outputs derived from O4
CLKIN_SEL0	Input clock select (LSB)
CLKIN_SEL1	Input clock select (MSB)
12C_ADDR	Selection control for i2c address

ClockBuilder Pro will allow a user to select similar functions to choose a single GPIO input. For instance, FS_x functions will be allowed to share a single GPIO pin but a FS_x function and OE_y function will not be allowed to share a single GPIO input.

The default I2C address for Si5332 is 6Ah. This I2C address can be customized and the user can select between "two" different I2C addresses using the I2C_ADDR function.

GPI pin functionality is only available when creating customized Si5332 configuration files and part numbers through ClockBuilder Pro. GPI function assignment and definition is not available through $I^{2} \mathrm{C}$ programming, meaning GPI pin use is not available in base parts.

5. Output Clock Terminations

The Si5332 output formats are programable and cover all popular output formats. The output drivers can be set by the programming the following bit fields:

Table 5.1. Output Format Related Register Fields

outx_mode: - Sets the mode of the driver.
outx_cmos_inv: - Sets an inverted copy for CMOS driver format.
outx_cmos_slew: - Sets the slew rate of the CMOS driver.
outx_cmos_str: - Sets the output impedance of the CMOS driver.

Table 5.2. OUTx_Mode vs Output Formats

OUTX_MODE	Driver Mode
0	off
1	CMOS on positive output only
2	CMOS on negative output only
3	dual CMOS outputs
4	$2.5 \mathrm{~V} / 3.3 \mathrm{~V}$ LVDS
5	1.8 V LVDS
7	$\mathrm{HCSL} 50 \Omega$ (external termination)
7	$\mathrm{HCSL} 50 \Omega$ (internal termination)
9	$\mathrm{HCSL} 42.5 \Omega$ (external termination)
10	$\mathrm{HCSL} 42.5 \Omega$ (internal termination)
11	LVPECL
12	Reserved
13	Reserved
14	Reserved
15	

The recommended termination for each output format is shown in these figures: Figure 5.1 LVCMOS Termination, Option 1 on page 14 and Figure 5.2 LVCMOS Termination, Option 2 on page 14.

Figure 5.1. LVCMOS Termination, Option 1

Figure 5.2. LVCMOS Termination, Option 2
1.71 V to 3.63 V

Figure 5.3. LVDS/LVDS Fast Termination, Option 1
1.71 V to 3.63 V

Figure 5.4. LVDS/LVDS Fast Termination, Option 2

Figure 5.5. LVPECL Termination, Option 1

Table 5.3. LVPECL Termination, Option 1

VDD Standard	Resistance	Resistance Value
2.5	R 1	250
	R 2	62.5
3.3	R 1	125
	R 2	84

2.25 V to 3.63 V

Figure 5.6. LVPECL Termination, Option 2

Table 5.4. LVPECL Termination, Option 2

VDD Standard	Resistance	Resistance Value
2.5	R 1	50
	R 2	50
	R 3	29.5
3.3	R 1	50
	R 2	50
	R 3	54 or 0

1.71 V to 3.63 V

HCSL receiver

Figure 5.7. HCSL Internal Termination Mode

Figure 5.8. HCSL External Termination Mode

5.2 AC-Coupled Clock Terminations

Figure 5.9. HCSL External Termination Mode

Figure 5.10. HCSL Internal Termination Mode
1.71 V to 3.63 V for LVDS

Figure 5.11. LVDS Termination

The terminations (shown in Figure 5.3 LVDS/LVDS Fast Termination, Option 1 on page 14 through Figure 5.6 LVPECL Termination, Option 2 on page 16) can also be converted by adding DC-blocking capacitances right before the receiver pins. However, the recommendation shown in Figure 5.11 LVDS Termination on page 17 is the simplest way to realize AC-coupling (i.e., the least number of components) and is, hence, the recommended circuit for AC-coupled termination circuits.

6. $I^{2} \mathrm{C}$ Configuration Download into a Blank Device (or Blank Profile in Multi-Profile Device)

This section explains the requirements and process of $\mathrm{I}^{2} \mathrm{C}$ downloading a RAM based configuration into a Si5332 blank device (or blank profile in a Si5332 multi-profile device). A blank device (or blank profile) is any device or device mode where no outputs are produced at power-up because no active profile information has been loaded into device registers from NVM.

6.1 RAM-based Configuration Restrictions

When downloading a RAM based configuration into a Si5332 device via $I^{2} \mathrm{C}$, there are some device configuration limitations and restrictions that must be observed.

6.1.1 GPIO Pin Configurations

For both Blank devices and Multi-profile devices, GPIO pin configurations cannot be changed, altered, or added via RAM register access.

For blank devices without any GPIO pin assignments this means no GPIO pins can be configured and all GPIO pins will be non-functional.

For multi-profile devices, any globally configured GPIO pin(s) will remain available in the blank profile, but no additional GPIOs can be configured. Note: Globally defined GPIOs will continue to function in the blank profile regardless of what is loaded into RAM.

6.1.2 External Crystal

For a RAM-based profile using an external crystal, CBPro's "Adjusted Capacitance" setting (shown below) must be appropriately set according to the crystal's loading capacitance and board stray capacitance.

CB New Si5332_GM1 Project - ClockBuilder Pro
ClockB uilder PrO v2.41 *\% (standard frequency planner) (no setting ov
Step 7 of 12 - Input Clocks ∇

Default PLL Input:
Crystal/Osc

Important Notes About Inputs:

Adjusted capacitance (pF) = (Crystal load capacitance - PCB stray capacitance).

6.2 CBPro Project Creation

Device Selection in CBPro

When creating a RAM based configuration using CBPro, the project device selection MUST correspond to the exact target device being configured. For example, configurations created for a Si5332-GM1 device can't be loaded into a Si5332-GM2/GM3 device. The Si5332 profile must be generated using the exact same Si5332-GMx part selection as the targeted device.

CB Create New Project - ClockBuilder Pro

ClockBuilder Pro v241 \%

Clock Generator Parts

Part	Num PLIs	Num Inputs	Num Outputs	Input Frequency	Output Frequency

Si5332-GM1/AM1	1	2	6	16 MHz to 50 MHz , 10 MHz to 250 MHz	$\begin{aligned} & 5 \mathrm{MHz} \text { to } \\ & 312.5 \mathrm{MHz} \end{aligned}$
Si5332-GM2/AM2	1	3	8	16 MHz to $50 \mathrm{MHz}, 10$ MHz to 250 MHz	$\begin{aligned} & 5 \mathrm{MHz} \text { to } \\ & 312.5 \mathrm{MHz} \end{aligned}$
Si5332-GM3	1	3	12	16 MHz to $50 \mathrm{MHz}, 10$ MHz to 250 MHz	$\begin{aligned} & 5 \mathrm{MHz} \text { to } \\ & 312.5 \mathrm{MHz} \end{aligned}$

Only single profile configurations can be downloaded

Multi-profile configurations cannot be downloaded into RAM via I2C. The RAM based configuration must be a single profile configuration. This is true even when creating a configuration to load into a blank profile of a multi-profile device

Special Restrictions for multi-profile devices

- If creating a configuration to be used with a blank profile in a multi-profile device, any global GPIO pins must be configured and used the same as (exactly) as in the multi-profile device.
- The $\mathrm{I}^{2} \mathrm{C}$ address can't be changed and must be same as existing multi-profile device.

6.3 CBPro Register File Preparation

After all design entry has been completed, and your project file has been saved, return to the Design Dashboard page and select the "Export" selection, as shown below, to export your configuration register set.

Click on "Register File" tab to get to the Register Export page as shown below. Be sure to check the "Include pre- and post-write control register writes" box as shown below. There are two type of register file exports, CSV file and C Code Header File. This export file will be used by your code to write the required registers to configure the device. You can Preview either file format to determine which is best suited for your application code.

Introduction Register File Settings File Multi-Project Register/Settings

About Register Export

This export will contain the registers that need to be written to the Si5332-GM3 to achieve your design/ configuration.
A command line version of this tool is available. Type CBProProjectRegistersExport --help from a command prompt to learn more.

Options

Export Type:

Comma Separated Values (CSV) File Each line in the file is an address,data pair in hexadecimal format. A comma separates the address and data fields.
(O) C Code Header File

The register write sequence is expressed in C code via an array of address, data pairs. This can be used directly in firmware code.
(V) Include pre- and post-write control register writes Certain control registers must be written before and after writing the volatile configuration registers. This ensures the device is stable during configuration download and resumes normal operation after the download is complete. You can turn inclusion of this sequence off if your host system is managing this process already.
Preview Export ... Save to File ...

6.4 $\mathrm{I}^{2} \mathrm{C}$ Download Process

The register export files contain (address, data) pairs, either as separate lines in the CSV file, or as a C structure pairs \{addr, data\}.
Your application code should write the data byte to the addr in each (addr, data) pair in sequence, from top to bottom of file, writing ALL bytes in the file to the device being configured.

Once all writes are completed the device should start outputting active clocks according to your CBPro specified profile.
See the next page for examples of both file formats.

6.5 Example CSV Export File (with Explanatory Notations)

6.6 Example C Code Header File

```
/*
    * Si5332-GM3 Rev D Configuration Register Export Header File
    *
    * This file represents a series of Skyworks Si5332-GM3 Rev D
    * register writes that can be performed to load a single configuration
    * on a device. It was created by a Skyworks ClockBuilder Pro
    * export tool.
    *
    * Part: Si5332-GM3 Rev D
    * Design ID:
    * Includes Pre/Post Download Control Register Writes: Yes
    * Created By: ClockBuilder Pro v2.31 [2019-03-25]
    * Timestamp: 2019-04-01 15:38:27 GMT-05:00
    *
    *
    */
#ifndef SI5332-GM3_REVD_REG_CONFIG_HEADER
#define SI5332-GM3_REVD_REG_CONFIG_HEADER
#define SI5332-GM3_REVD_REG_CONFIG_NUM_REGS 88
typedef struct
{
    unsigned int address; /* 8-bit register address */
    unsigned char value; /* 8-bit register data */
} si5332-gm3_revd_register_t;
si5332-gm3_revd_register_t const si5332-gm3_revd_registers[SI5332-GM3_REVD_REG_CONFIG_NUM_REGS] =
{
    /* Start configuration preamble */
    /* Set device in Ready mode */
    { 0x06, 0x01 },
    /* End configuration preamble */
    /* Start configuration registers */
    { 0x17, 0x00 },
    { 0x18, 0x00 },
    { 0x19, 0x00 },
    { 0x1A, 0x00 },
    { 0x1B, 0x00 },
    { 0x1C, 0x00 },
    •
    { 0xBD, 0x00 },
    { 0xBE, 0x10 },
    { 0xBF, 0x01 },
    { 0xC0, 0x30 },
    { 0xC1, 0x30 },
    /* End configuration registers */
    /* Start configuration postamble */
    /* Set device in Active mode */
    { 0x06, 0x02 },
    /* End configuration postamble */
```


7. Programming the Volatile Memory

The volatile memory can be programmed to set up the various functions necessary to realize a PLL function, a clock output to clock input relationship and can be used to monitor input clock that controls the PLL. The front page block diagram is repeated here to refresh the various limits and possibilities that are necessary for the calculations below

Figure 7.1. Top Level Block Diagram

7.1 Programming the PLL

The PLL programming involves three distinct constraints:

1. The minimum and the maximum frequencies possible for the PFD (Phase Frequency Detector) at lock. That is set by the reference frequency which is set the input divider P and the active input clock as selected by the IN SEL pins or registers.
2. The VCO frequency that is set by feedback divider ($\mathrm{Mn} / \mathrm{Md}$) and the PFD frequency also has a limited range that is unique to Si5332.
3. The PLL closed loop transfer function characterized by its loop band width and peaking is set by programming the loop parameters.

The table below lists the constraints for the PLL reference frequency and the VCO frequency. The PLL reference frequency (pllRefFreq) and the VCO frequency (vcoFreq) are related by the equation below:
$v c o F r e q=$ pllRefFreq $\times\left(\frac{M_{n}}{M_{d}}\right)$
For a given plan, the pllRefFreq can be readily solved as it is derived from the input clock frequency. To get to this optimization, the "active" input to the PLL must be selected from the XA/XB, CLKIN_1, CLKIN)2, in1p/m input clocks using either the IMUX_SEL register field or the CLKIN_SEL pins \{if CKIN_SEL pins are available in the custom part that you choose to reprogram\}. PllRefFreq is given by the In-Freq (active clock input frequency) and P as:
PllRefFreq $=\frac{\text { InFreq }}{P}$
Table 7.1. Constraints for PLL Reference Frequency and VCO Frequency

Field Name	Value	Description
pllMinRefFreq	10 MHz	The minimum reference frequency the PLL can tolerate
pllMaxRefFreq	50 MHz	The maximum reference frequency the PLL can tolerate
vcoCenterFreq	2.5 GHz	The center frequency of the VCO's tuning range
vcominFreq	2.375 GHz	The minimum frequency of the VCO's tun- ing range
vcoMaxFreq	2.625 GHz	The maximum frequency of the VCO's tun- ing range

List all required output frequencies, Fxy, in groups denoted by $G x$, where $x=0,1,2,3,4,5$ and $y=a, b, c$. This grouping is done such that frequencies related to each other by rational fractions of integers between 1 and 63 are in that group. For example, $100 \mathrm{MHz} / 80 \mathrm{MHz}$ $=5 / 4$ is a rational fraction. Each group Gx is associated with a single output voltage supply driver inside Si5332 and is shown in Table 7.2 Output Frequency Variables Grouping and Mapping to Actual Output Pins on page 26. The table also shows the output frequency symbol Fxy mapped to the output name in the Si5332 pin descriptions. The integer O-dividers are denoted by hsdiv. Each Oi divider maps to a hsdivi in the solver where i is an integer between 0 and 4 . Similarly, the two Multisynth N -dividers, Nj map to IDj and $\mathrm{j}=0$ or 1.The constraints for these divider values are listed in Table 7.3 Constraints for hsdiv and id on page 26.

Table 7.2. Output Frequency Variables Grouping and Mapping to Actual Output Pins

Si5332 12 Output Part Output Pair	Si5332 8 Output Part Output Pair	Si5332 6 Output Part Output Pair	Output Frequency Variable for Solver	The Output Frequency Group
OUTO	OUTO	OUTO	$\mathrm{F}_{0 \mathrm{~A}}$	G_{0}
OUT1	OUT1	OUT1	$\mathrm{F}_{1 \mathrm{~A}}$	G_{1}
OUT2			$\mathrm{F}_{1 \mathrm{~B}}$	G_{1}
OUT3	OUT2	OUT2	$\mathrm{F}_{2 \mathrm{~A}}$	G_{2}
OUT4	OUT3		$\mathrm{F}_{2 \mathrm{~B}}$	G_{2}
OUT5			$\mathrm{F}_{2 \mathrm{C}}$	G_{2}
OUT6	OUT4	OUT3	$\mathrm{F}_{3 \mathrm{~A}}$	G_{3}
OUT7	OUT5		$\mathrm{F}_{3 \mathrm{~B}}$	G_{3}
OUT8			$\mathrm{F}_{3} \mathrm{C}$	G_{3}
OUT9	OUT6	OUT4	$\mathrm{F}_{4 \mathrm{~A}}$	G_{4}
OUT10	OUT7	OUT5	$\mathrm{F}_{5 \mathrm{~A}}$	G_{5}
OUT11			$\mathrm{F}_{5 \mathrm{~B}}$	G_{5}

Table 7.3. Constraints for hsdiv and id

Field Name	Value	Description
hsdivMinDiv	8	The minimum divide value that the HSDIV can support
hsdivMaxDiv	255	The maximum divide value that the HSDIV can support
idMinDiv	10	The minimum divide value that the ID can support
idMaxDiv	255	The maximum divide value that the ID can support

Each output frequency Fout xy is given by:
Foutxy $=\frac{\text { vcoFreq }}{\left\{h s d i v_{j} \times \text { Rxy }\right\}}$
or
Foutxy $=\frac{\text { vcoFreq }}{\left\{i d_{j} \times R x y\right\}}$

An hsdiv or id divider is common for output frequencies grouped in a given Gx. Given these constraints, the solver must first choose a PIIRefFreq that satisfies the constraints in Table 7.4 Loop BW Options on page 27. The search for VcoFreq can be broken down into the following steps.

1. From the output frequency set, form a set of " M " non-equal frequencies. Group the ($N-M$) equal frequencies into the same " x " in Foutxy grouping.
2. Now form ${ }^{M} C_{2}$ groups of $\{M-2\}$ output frequencies. Find the LCM of each group and find an integer "l" that can such that:
a. vcoFreq $=I^{*}$ LCM can meet the constraint for vcoFreq in Table 7.1 Constraints for PLL Reference Frequency and VCO Frequency on page 25.
b. List the "L" groups that provide a legal vcoFreq, i.e. a vcoFreq that satisfies the condition in step a.
c. Choose the vcoFreq that has most number of performance critical clocks that do not need "spread spectrum" clock-ing as part of the "M-2" output clocks

Given that vcofreq, calculate the feedback divider as:
$\frac{M_{n}}{M_{d}}=\frac{\text { vcoFreq }}{\text { pllRefFreq }}$

The $\mathrm{Mn} / \mathrm{Md}$ fraction is represented in register fields IDPA_INTG, IDPA_RES and IDPA_DEN
$I D P A _I N T G=$ floor $\left(\frac{128 \times \text { vcoFreq }}{\text { pllRefFreq }}\right)$
$\frac{I D P A _R E S}{\text { IDPA_DEN }}=\frac{128 \times v c o F r e q}{\text { pllRefFreq }}-I D P A _I N T G$
As can be seen from the above equations, the ratio IDPA_RES/ IDPA_DEN will always be less than 1 .
Note: All these register fields are 15 bits wide. Therefore, the fraction will need to truncate to up to this precision. This section fully determines the VCO frequency, the P-divider and the feedback divider for this plan given the choice of using O-dividers \{HSDIV\} for M-2 output clocks and N-dividers $\{I D\}$ for two output clocks.

The next step will be to determine the closed loop response that is required from the PLL. The table below lists the different loop BW settings possible and the register field value that will enable that loop BW setting:

Table 7.4. Loop BW Options

PLL_MODE	Loop Bandwidth (kHz)	PLL. Ref. Freq. Min (MHz)	PLL. Ref. Freq. Max. (MHz)
0		ILLEGAL IF PLL MODE IS ENABLED	
1	350	10	15
2	250	10	10
3	175	10	15
4	500	15	30
5	350	15	30
6	250	30	30
7	175	30	50
9	350	250	30
10	175		15
11			15

This algorithm will result in a final solution for a VCO frequency, vcoFreq, that can then be used to calculate the O-divider, N -divider, and R-divider values needed to derive each output frequency, Foutxy.

7.2 Programming the Clock Path

Given a valid VCO frequency for the M unique frequencies, segregate the $N-M$ equal frequencies into outputs from each group $G x$ in Table 7.2 Output Frequency Variables Grouping and Mapping to Actual Output Pins on page 26. When arranging outputs, care must be taken to minimize crosstalk (without violating the contraints imposed from the grouping of output frequencies into the VDDO "banks"). Whenever several high frequencies, fast rise time, large amplitude signals are all close to one another, the laws of physics dictate that there will be some amount of crosstalk. The jitter of the Si5332 is low, and, therefore, crosstalk can become a significant portion of the final measured output jitter. Some of the source of the crosstalk will be the Si5332 and some will be introduced by the PCB. For extra fine tuning and optimization in addition to following the usual PCB layout guidelines, crosstalk can be minimized by modifying the arrangements of different output clocks:

1. Avoid adjacent frequency values that are close. A 155.52 MHz clock should not be next to a 156.25 MHz clock. If the jitter integration bandwidth goes up to 20 MHz , then keep adjacent frequencies at least 20 MHz apart.
2. Adjacent frequency values that are integer multiples of one another are okay and these outputs should be grouped accordingly.
3. Unused outputs can be used to separate clock outputs that might otherwise interfere with one another. If some outputs have tight jitter requirements while others are relatively loose, rearrange the clock outputs so that the critical outputs are the least susceptible to crosstalk. These guidelines typically only need to be followed by those applications that wish to achieve the highest possible levels of jitter performance. Because CMOS outputs have large pk-pk swings and do not present a balanced load to the VDDO supplies, CMOS outputs generate much more crosstalk than differential outputs. For this reason, CMOS outputs should be avoided whenever possible. When CMOS is unavoidable, even greater care must be taken with respect to the above guidelines.

An output multiplexer (output mux) or crosspoint mux needs to be programmed such that each group $G x$ is set to the correct O-divider, N-divider, or input clock (in the case of buffering). Each output, Foutxy, has this common divider or input clock reference that needs to be set. The multipler setting that routes the correct divider/clock source to the correct group is shown in the following table.

Table 7.5. Output Mux (Crosspoint Mux) Settings

Register field	Description
omuxx_selo	Selects output mux clock for output clocks in group Gx: $0=$ PLL reference clock before pre-scaler 1 = PLL reference clock after pre-scaler 2 = Clock from input buffer 0 3 = Clock from input buffer 1
omuxx_sel1	Selects output mux clock for output clocks in group Gx: $\begin{aligned} & 0=\text { HSDIV0 } \\ & 1=\text { HSDIV1 } \\ & 2=\text { HSDIV2 } \\ & 3=\text { HSDIV3 } \\ & 4=\text { HSDIV4 } \\ & 5=\text { ID0 } \\ & 6=\text { ID1 } \\ & 7=\text { Clock from omux1_sel0 } \end{aligned}$

The final steps will be to program the hsdiv and id dividers. The equations below show the relationship between hsdiv, id divider values with their associated output frequency. They also show the register fields that need to be programmed to set up the divider values correctly. The register field and the divider value are both denoted by:
hsdivxa_div $=\frac{v c o F r q}{\text { Foutxa } \times \text { Rxa }}$
The id dividers are calculated as below:
idxa $=\frac{v c o F r q}{\text { Foutxa } \times \text { Rxa }}$
The ida fraction is represented in register fields IDPA_INTG, IDPA_RES and IDPA_DEN
$I D x A _I N T G=$ floor $\left(\frac{128 \times v c o \text { Freq }}{\text { Foutxa } \times \text { Rxa }}\right)$
$\frac{I D x A _R E S}{\text { IDxA_DEN }}=\frac{128 \times v c o F r e q}{\text { Foutxa } \times \text { Rxa }}-I D x A_{-} I N T G$

7.3 Programming the Output Clock Frequency

The Rxy register fields are programmed as shown in the table below. This last step completes the settings of all dividers that will result in the frequency plan. When a valid divider solution space cannot be determined, that frequency plan is not realizable in the Si5332.

Table 7.6. Rxy to Register Field Mapping for 12-output Si5332

Divider Value	Register Field	Description
ROA	OUT0_DIV	Driver divider ratio. $\begin{aligned} & 0=\text { disabled } \\ & 1-63=\text { divide value } \end{aligned}$
R1A	OUT1_DIV	Driver divider ratio. $\begin{aligned} & 0=\text { disabled } \\ & 1-63=\text { divide value } \end{aligned}$
R1B	OUT2_DIV	Driver divider ratio. $\begin{aligned} & 0=\text { disabled } \\ & 1-63=\text { divide value } \end{aligned}$
R2A	OUT3_DIV	Driver divider ratio. $\begin{aligned} & 0=\text { disabled } \\ & 1-63=\text { divide value } \end{aligned}$
R2B	OUT 4_DIV	Driver divider ratio. $\begin{aligned} & 0=\text { disabled } \\ & 1-63=\text { divide value } \end{aligned}$
R2C	OUT5_DIV	Driver divider ratio. $\begin{aligned} & 0=\text { disabled } \\ & 1-63=\text { divide value } \end{aligned}$
R3A	OUT6_DIV	Driver divider ratio. $\begin{aligned} & 0=\text { disabled } \\ & 1-63=\text { divide value } \end{aligned}$
R3B	OUT7_DIV	Driver divider ratio. $\begin{aligned} & 0=\text { disabled } \\ & 1-63=\text { divide value } \end{aligned}$
R3C	OUT8_DIV	Driver divider ratio. $\begin{aligned} & 0=\text { disabled } \\ & 1-63=\text { divide value } \end{aligned}$
R4A	OUT9_DIV	Driver divider ratio. $\begin{aligned} & 0=\text { disabled } \\ & 1-63=\text { divide value } \end{aligned}$

Divider Value	Register Field	Description
R5A	out10_DIV	Driver divider ratio. $0=$ disabled $1-63=$ divide value
R5B	OUT11_DIV	Driver divider ratio. $0=$ disabled
		$1-63=$ divide value

7.4 Programming the Output Clock Format

The following tables provide the method to fully define every driver.
Table 7.7. Driver Set Up Options

Driver	Register Field	Description
Driver for output OUTx	OUTx_mode	Software interpreted driver configuration. See Table 7.8 Driver Mode Options on page 32.
	OUTx _skew	Skew control. Programmed as an unsigned integer. Can add delay of $35 \mathrm{ps} / \mathrm{step}$ up to 280 ps.
	OUTx _stop_highz	Driver output state when stopped. $\begin{aligned} & 0=\text { low-z } \\ & 1 \text { = high-z } \end{aligned}$
	OUTx _cmos_inv	Sets the polarity of the two outputs in dual CMOS mode. $\begin{aligned} & 0=\text { no inversion } \\ & 1=\text { OUTx } \sim \text { inverted } \end{aligned}$
	OUTx _cmos_slew	Controls CMOS slew rate from fast to slow. $\begin{aligned} & 00=\text { fastest } \\ & 01=\text { slow } \\ & 10=\text { slower } \\ & 11=\text { Slowest } \end{aligned}$
	OUTx _cmos_str	CMOS output impedance control. $\begin{aligned} & 0=50 \Omega \\ & 1=25 \Omega \end{aligned}$

Table 7.8. Driver Mode Options

drvxy_MODE	Driver Mode
0	off
1	CMOS on positive output only
2	CMOS on negative output only
3	dual CMOS outputs
4	2.5 V/3.3 V LVDS
5	$1.8 \vee$ LVDS
6	$2.5 \mathrm{~V} / 3.3 \mathrm{~V}$ LVDS fast
7	1.8 V LVDS fast
8	$\mathrm{HCSL} 50 \Omega$ (external termination)
90Ω (internal termination)	
10	$\mathrm{HCSL} 42.5 \Omega$ (external termination)
11	HCSL 42.5Ω (internal termination)
12	LVPECL
13	Reserved
14	Reserved
15	Reserved

7.5 Programming for Frequency Select Operations

Every hsdiv and id has a Bank A and a Bank B divider. The register field names that begin with hsdivxb or idxb denote Bank B dividers. Any FS frequency will be:
Foutxy $_{F S}=\frac{\text { vcoFreq }}{i d x b}$
Or
Foutxy $_{F S}=\frac{v c o F r e q}{h s d i v b}$
Any output associated with either idxa or hsdivxa can be switched into the above FS frequency. The control that selects the Bank B divider is as shown in table below.

Table 7.9. The Control Register Bit to Switch Frequencies

Register Field	Description
hsdivx_div_sel	Selects bank A or bank B divider HSDIV0 settings. The HSDIVO supports dynamic integer divider changes through this divider se- lect control bit. $0=$ bank A divider $1=$ bank B divider
idx_cfg_sel	Output interpolative divider 0 configuration bank select. The inter- polative divider supports dynamically switching between two com- plete configurations controlled by this bit. Reconfiguration should be done on the unselected bank. If IDO_CFG=0, running based off bank A, then bank B may be freely reconfigured and once ready all changes will be applied to the ID once IDO_CFG=1 thus changing the ID from bank A to bank B. Spread spectrum enable fields ID0A_SS_ENA and IDOB_SS_ENA are the only exception and may be enabled/disabled while bank is selected.
$0=$ bank A	

In a factory-programmed part, a pin (the FS pin) can be used for the same purpose as the control registers. Once, a control bit is set, the backup divider values control the output frequency and that is described the equations below:

O-Divider

hsdivxb_div $=\frac{v c o F r e q}{\text { Foutxb } \times \text { Rxa }}$

N-Divider

$i d x b=\frac{\text { vcoFreq }}{\text { Foutxb } \times \text { Rxa }}$
The ida fraction is represented in register fields IDPB_INTG, IDPB_RES and IDPB_DEN
$I D x B _I N T G=$ floor $\left(\frac{128 \times v c o F r e q}{\text { Foutxb } \times \text { Rxa }}\right)$
$\frac{I D x B_{_} R E S}{I D x B_{-} D E N}=\frac{128 \times v c o F r e q}{\text { Foutxb } \times \text { Rxa }}-I D x B_{-} I N T G$

As can be seen, the backup divider values limit the possible values for the output frequency in this backup mode. Another key feature is that the switch to a FS frequency is "glitchless". Therefore, the recommended method for glitchless frequency updates is to program either divider a or b (when divider b or a is currently driving the output frequency), and then switch this divider.

7.6 Programming for Spread Spectrum

Spread spectrum clocking (SSC) is available only on the multisynth outputs. Each multisynth can implement spread spectrum in either the main divider or the backup divider (the FS option). Therefore, the user can program a maximum of four different spread spectrum "profiles" from the same part, although only two profile are available on outputs at any given time. The amplitude of the SSC clock frequency (as illustrated in Figure 7.2 Illustration: Center and Down Spread SSC Clocks as Frequency vs Time Plots on page 34) is denoted by $s s c \%$. For example, for down spread of -0.5%, then $s s c \%=0.5$. For center spread of $+/-0.25 \%$, then $s s c \%=0.25$. The variable, Amod, in the equation below is a real number representation of the $s s c \%$, which is a percentage value. The modulation rate (also illustrated in Figure 7.2 Illustration: Center and Down Spread SSC Clocks as Frequency vs Time Plots on page 34) is denoted by Fmod in the equations below.
$A \bmod =\left\{\frac{\frac{\{s s c \% \times 2\}}{100 \text { for center spread }}}{\frac{s s c \%}{100 \text { for down spread }}}\right\}$
idxy_ss_step_num $=\frac{\left\{\frac{v c o F r e q}{i d x y}\right\}}{F \bmod \times 4}$
$i d x y_{-} s s_{-}$step_res $=\frac{\left\{A \bmod \times i d x y _d e n \times i d x y \times 128\right\}}{2 \times i d x y_{-} s s_{-} \text {step_num }}$

Figure 7.2. Illustration: Center and Down Spread SSC Clocks as Frequency vs Time Plots

The table below shows the register fields (and terms) idxy_ss_step_num and idxy_ss_step_res. idxy_ss_step_num is the number of frequency steps between the mean and the maximum/minimum frequencies in SSC clocking and idxy_ss_step_res is the frequency resolution that is required in each step. The goal is to maximize the number of steps and minimize the resolution. However, the number
of steps is set by the modulation rate (typically $30-33 \mathrm{kHz}$). The step resolution can be minimized by setting the largest value possible for idxy_den. Idxy_den is the denominator of the id divider and setting it as close as possible to $2^{15}-1$ is desired.

Table 7.10. SCC Register Fields

idxy_ss_ena	Spread spectrum enable. This is the only bank configuration field which may be changed dynamically while the bank is selected as the active bank. Users may freely enable/disable spread spectrum. $0=$ spread spectrum disabled 1 = spread spectrum enabled
idxy_ss_mode	Spread spectrum mode. $\begin{aligned} & 0=\text { disabled } \\ & 1=\text { center } \\ & 2=\text { invalid } \\ & 3=\text { Down } \end{aligned}$
idxy_ss_clk_num	Number of output clocks for each frequency step.
idxy_ss_step_num	Number of frequency steps in one quarter SSC modulation period, allows for frequency step every output clock.
idxy_ss_step_intg	Divide ratio spread step size.
idxy_ss_step_res	Numerator of spread step size error term.
idxy_ss_step_den	Denominator of spread step size error term.

To enable SSC, idxy_ss_ena needs to be set and the right mode selected in idxy_ss_mode. The number of output clocks in each frequency step, idxy_ss_clk_num, needs to be set to 1 and idxy_ss_step_den is the same as idxy_den and idxy_ss_step_intg is always zero.

The following flow needs to be followed to program the registers into Si 5332 :

1. Write $0 \times 01 \mathrm{~h}$ to register $0 \times 06 \mathrm{~h}$ and put the Si 5332 into the READY state.
2. Write all the relevant registers as calculated from the steps above.
3. Ensure that the valid input clocks are available for the Si5332 to attempt a PLL lock.
4. Write $0 \times 02 \mathrm{~h}$ to register $0 \times 06 \mathrm{~h}$ and put the Si5332 into the ACTIVE state.

Register names are shown above in generic format such as "idxy_..." where the "xy" is a wildcard substitution where "x"refers to the N divider number (either 0 or 1) and " y " refers to the N divider register set (either A or B). For example, the register name for NO divider set A registers would start with id0a_.... and registers for N 1 divider set B would start with id1b_.

8. Si5332 Pinout and Package Variant

There are six versions of the Si5332 available for customers. The pinout for the external crystal versions are shown in the figures below. The pinout for the integrated crystal version parts are identical for each package except that the crystal input pins in the integrated crystal versions are NC (no connect). These NC pins should be left unconnected and not connected to any external node in the system for these parts.

Figure 8.1. 12-Output Si5332 6x6 mm QFN Package

Figure 8.2. 8-Output Si5332 6x6 mm QFN Package

Figure 8.3. 6-Output Si5332 5x5 mm QFN Package

9. Recommended Schematic and Layout Practices

The Si5332 schematic and layout design can be referenced from the EVB design for Si5332. For each package, the user's guide (links below) outlines the EVB design and provides links to schematic and layout references for each package type.

- UG301: Si5332-12EX-EVB User's Guide
- UG300: Si5332-8EX-EVB User's Guide
- UG299: Si5332-6EX-EVB User's Guide
- UG328: Si5332-6IX-EVB User's Guide
- UG329: Si5332-8IX-EVB User's Guide
- UG330: Si5332-12IX-EVB User's Guide

At the schematic/placement/layout design time, these are the following guidelines:

1. Power supply filtering:
a. The Si5332 can tolerate up to $100 \mathrm{mV}(+/-50 \mathrm{mV})$ of noise for each supply node. The application note, AN1107: Si5332 Power Supply Noise Rejection, provides the performance to be expected with such a noise.
i. As can be seen, this noise can be from a switched mode power supply (which causes noise over a wide band of frequencies) or can be noise due to some oscillatory behavior from a LDO regulator.
ii. The only filtering needed on each supply node is a $1 \mu \mathrm{~F}$ and a $0.1 \mu \mathrm{~F}$ placed as close as possible to that node.
iii. The Si5332 EVBs have a much larger capacitance on the regulator end, mainly to compensate for the regulator loop so that there is no oscillatory behavior from the regulators regardless of the voltage supply value set for that regulator. The regulator supply design on the EVB is not required for Si 5332 in system designs.
2. Crystal placement:
a. The crystals should be placed as close as possible to the XA/XB pins. This placement ensures that the crystal oscillator traces do not cause undue delays and hence, cause either an unusually long crystal start up time or get susceptible to crosstalk and thereby increase jitter on the output clocks.

10. Register Map

All common registers are listed in the table below. The registers that are specific to the 32-QFN part are listed in Table 12.1 Si5332 32 QFN Registers on page 49. The registers that are specific to the 40-QFN part are listed in Table 13.1 Si5332 40 QFN Registers on page 54. The registers that are specific to the 48-QFN part are listed in Table 14.1 Si5332 48 QFN Registers on page 60. The fields in these tables are the register field name, address, base, bit length, "R/W/RW", description, and device mode. Note that all registers hold values that are "big-endian", i.e., bit 7 is the MSB in an eight-bit field.

The definitions for these fields are:

1. Register Field Name: The name for the register field in this FRM as referenced in the tables below and in other sections in this FRM.
2. Address: The 8-bit register address to be used in the $I^{2} \mathrm{C}$ transactions when the register field needs to be addressed.
3. Base: Every register field address addresses an 8 -bit wide location. However, the register field may not occupy that entire location. In those cases, they may also not start at the LSB i.e. bit \#0 of that location. Base provides the bit \#i from which this register field begins in the addressed location.
4. Bit Length: Bit length indicates the "number of bits" that the register field occupies in the addressed location
5. R/W/RW: This field indicates if the register field is Read only (R), Write only (W) or Read/Write (RW).
6. Description: Description is an explanation on the purpose and programmability offered by the register field.
7. I: Device mode is the mode of Si 5332 in which the register field can be accessed. Si 5332 has two modes of function "READY" where the Si 5332 is ready for programming in which time there will no outputs from Si 5332 and "ACTIVE" where the Si 5332 is actively locked to an input and is providing outputs. Some register fields can be pro-gramed in either READY or ACTIVE mode (READY/ACTIVE) whereas others can only be programmed in READY mode (READY). Device mode provides input on which mode applies to a register field a user intends to modify.

11. Si5332 Common Registers

Table 11.1. Si5332 Register Map

Register Field Name	Address	Base	Bit Length	R/W/RW	Description	Device Mode
VDD_XTAL_OK	5	7	1	R	Flag that VDDI is greater than its minimum level, which is about 1.5 V .	READY/ ACTIVE
VDDO_OK	5	0	6	R	Each bit in the VDDO_OK register field indicates that a specific VDDO supply is above 1.2 V , with bit position corresponding to a VDDO supply number. Bit 0 is VDDO0 status, Bit 1 is VDDO1 status, Bit 2 is VDDO2 status, and so on up to Bit 5 is VDDO5 status.	
USYS_CTRL	6	0	8	RW	User System Control. Use this write-only register to command the device to transition to ACTIVE or READY state. (Use USYS_STAT to read present state.) Write 0×01 to command device to enter READY state. Write 0×02 to enter ACTIVE state.	READY/ ACTIVE
USYS_STAT	7	0	8	R	User System Status. This read-only register indicates the present device operational state. Can be used with USYS_CTRL to confirm device has entered the commanded state (i.e., ACTIVE or READY). Reading 0x01 indicates the device is in READY state. 0x02 indicates the device is in ACTIVE state. If 0×89 is read, this indicates the device has not detected an input clock source and can't proceed to ACTIVE state.	READY/ ACTIVE
UDRV_OE_ENA	8	0	1	RW	User master output enable. Resets to 1. This bit controls simultaneously the driver start for all drivers.	READY/ ACTIVE
USER_SCRATCH0	9	0	8	RW	User scratch pad registers, freely R/W any time. This is just run time scratch area, not initialized from NVM. The reset value is 0×00 for all bytes. Can be I2C read and written any time.	READY/ ACTIVE
USER_SCRATCH1	A	0	8	RW		
USER_SCRATCH2	B	0	8	RW		
USER_SCRATCH3	C	0	8	RW		

Register Field Name	Address	Base	Bit Length	R/W/RW	Description	Device Mode
DEVICE_PN_BASE	D	0	8	R	Device PN	READY/ ACTIVE
DEVICE_REV	E	0	8	R	Device revision	
DEVICE_GRADE	F	0	8	R	Device grade information	
FACTORY_OPN_ID0	10	0	4	R	The Orderable part number identification, OPN ID-0. For example, in Si5332AC93541-GM3, 9 is ID-0.	
FACTORY_OPN_ID1	10	4	4	R	The Orderable part number identification, OPN ID-0. For example, in Si5332AC93541-GM3, 9 is ID-0.	
FACTORY_OPN_ID2	11	4	4	R	The Orderable part number identification, OPN ID-0. For example, in Si5332AC93541-GM3, 9 is ID-0.	
FACTORY_OPN_ID3	11	0	4	R	The Orderable part number identification, OPN ID-0. For example, in Si5332AC93541-GM3, 9 is ID-0.	
FACTORY_OPN_ID4	12	0	4	R	The Orderable part number identification, OPN ID-0. For example, in Si5332AC93541-GM3, 9 is ID-0.	
FACTORY_OPN_REVISION	12	4	4	R	The Orderable part number's product revision number.	
DESIGN_ID0	17	0	8	R	Design identification set by user in CBPro project file	
DESIGN_ID1	18	0	8	R		
DESIGN_ID2	19	0	8	R		
I2C_ADDR	21	0	7	R	${ }^{1}{ }^{2} \mathrm{C}$ mode device address. Reset value is 110_1010 binary.	
I2C_SCL_PUP_ENA	23	0	1	RW	Enable $50 \mathrm{k} \Omega$ pullup resistor on SCL pad.	READY/ ACTIVE
I2C_SDA_PUP_ENA	23	1	1	RW	Enable $50 \mathrm{k} \Omega$ pullup resistor on SDA pad.	READY/ ACTIVE
OMUXO_SELO	25	0	2	RW	Selects output mux clock source for output clocks in group G0:OUT0: $0=$ PLL reference clock before P-divider $1=$ PLL reference clock after P-divider 2 = Clock from input buffer CLKIN_2 3 = Clock from input buffer CLKIN_3	READY/ ACTIVE

Register Field Name	Address	Base	Bit Length	R/W/RW	Description OMUXO_SEL1	25

Register Field Name	Address	Base	Bit Length	R/W/RW	Description	Device Mode
OMUX2_SEL1	27	4	3	RW		READY/ ACTIVE
OMUX3_SEL0	28	0	2	RW	Selects output mux clock source for out- put clocks in group G3:OUT3 for GM1. OUT4,OUT5 for GM2. OUT6, OUT7, OUT8 for GM3:	READY/ ACTIVE
OMUX3_SEL1	28					

Register Field Name	Address	Base	Bit Length	R/W/RW	Description	Device Mode
OMUX4_SEL1	29	4	3	RW	Selects output mux clock source for output clocks in group G4:OUT4 for GM1. OUT6 for GM2. OUT9 for GM3: $\begin{aligned} & 0=\text { HSDIV0 } \\ & 1 \text { = HSDIV1 } \\ & 2=\text { HSDIV2 } \\ & 3 \text { = HSDIV3 } \\ & 4=\text { HSDIV4 } \\ & 5 \text { = ID0 } \\ & 6=\text { ID1 } \\ & 7 \text { = Clock from OMUXO_SEL0 } \end{aligned}$ Note that the OMUX0_SEL1 value is forced to 7 whenever the PLL is disabled	READY/ ACTIVE
OMUX5_SELO	2A	0	2	RW	Selects output mux clock source for output clocks in group G5:OUT5 for GM1. OUT7 for GM2. OUT10,OUT11 for GM3: $0=$ PLL reference clock before prescaler 1 = PLL reference clock after prescaler 2 = Clock from input buffer CLKIN_2 3 = Clock from input buffer CLKIN_3	READY/ ACTIVE
OMUX5_SEL1	2A	4	3	RW	Selects output mux clock source for output clocks in group G5:OUT5 for GM1. OUT7 for GM2. OUT10,OUT11 for GM3: $\begin{aligned} & 0=\text { HSDIV0 } \\ & 1 \text { = HSDIV1 } \\ & 2=\text { HSDIV2 } \\ & 3=\text { HSDIV3 } \\ & 4=\text { HSDIV4 } \\ & 5=\text { ID0 } \\ & 6=\text { ID1 } \\ & 7=\text { Clock from OMUXO_SEL0 } \end{aligned}$ Note that the OMUX0_SEL1 value is forced to 7 whenever the PLL is disabled	READY/ ACTIVE
HSDIVOA_DIV	2B	0	8	RW	OO divider value	READY if divider is currently driving the output else READY/ ACTIVE
HSDIVOB_DIV	2 C	0	8	RW	OO divider value for bank A	

Register Field Name	Address	Base	Bit Length	R/W/RW	Description	Device Mode
HSDIV1A_DIV	2D	0	8	RW	O1 divider value for bank A	
HSDIV1B_DIV	2E	0	8	RW	O1 divider value for bank B	
HSDIV2A_DIV	2F	0	8	RW	O2 divider value for bank A	
HSDIV2B_DIV	30	0	8	RW	O 2 divider value for bank B	
HSDIV3A_DIV	31	0	8	RW	O3 divider value for bank A	
HSDIV3B_DIV	32	0	8	RW	O3 divider value for bank B	
HSDIV4A_DIV	33	0	8	RW	O4 divider value for bank A	
HSDIV4B_DIV	34	0	8	RW	O4 divider value for bank B	
HSDIV3_DIV_SEL	35	3	1	RW	Selects bank A (0) or bank B (1) O3 divider settings. Same description applies as for HSDIVO_DIV_SEL.	READY/ ACTIVE
ID0_CFG_SEL	35	6	1	RW	N0 configuration bank select. The divider supports dynamically switching between two complete configurations controlled by this bit. Reconfiguration should be done on the unselected bank. If IDO_CFG=0, running based off bank A, then bank B may be freely reconfigured and once ready all changes will be applied to the ID once ID0_CFG=1 thus changing the ID from bank A to bank B. Spread spectrum enable fields IDOA_SS_ENA and IDOB_SS_ENA are the only exception and may be enabled/disabled while bank is selected. $\begin{aligned} & 0=\text { bank } A \\ & 1=\text { bank } B \end{aligned}$	READY/ ACTIVE
HSDIV4_DIV_SEL	35	4	1	RW	Selects bank A (0) or bank B (1) O4 divider settings. Same description applies as for HSDIVO_DIV_SEL.	READY/ ACTIVE
ID1_CFG_SEL	35	7	1	RW	N1 configuration bank select. Same description related to ID1 applies as in the ID0_CFG description. $\begin{aligned} & 0=\text { bank } A \\ & 1=\text { bank } B \end{aligned}$	READY/ ACTIVE
HSDIV2_DIV_SEL	35	2	1	RW	Selects bank A (0) or bank B (1) O2 divider settings. Same description applies as for HSDIV0_DIV_SEL.	READY/ ACTIVE
HSDIVO_DIV_SEL	35	0	1	RW	Selects bank A or bank B divider OO settings. O0 supports dynamic integer divider changes through this divider select control bit. $\begin{aligned} & 0=\text { bank } A \text { divider } \\ & 1=\text { bank } B \text { divider } \end{aligned}$	READY/ ACTIVE
HSDIV1_DIV_SEL	35	1	1	RW	Selects bank A (0) or bank B (1) O1 divider settings. Same description applies as for HSDIVO_DIV_SEL.	READY/ ACTIVE

Register Field Name	Address	Base	Bit Length	R/W/RW	Description	Device Mode
IDOA_INTG	36	0	15	RW	The terms of an $a+b / c$ desired divider setting must be processsed into IDOA_INTG, IDOA_RES, and IDOA_DEN register terms.intg $=$ floor $\left(\left(\left(a^{*} c+b\right)^{*} 128 / c\right)-512\right)$.	READY if divider is currently driving the output else READY/ ACTIVE
IDOA_RES	38	0	15	RW	res $=\bmod \left(\mathrm{b}^{* 128, ~ c) ~}\right.$	
IDOA_DEN	3A	0	15	RW	den $=\mathrm{c}$	
IDOA_SS_ENA	3 C	0	1	RW	Spread spectrum enable. This is the only bank configuration field which may be changed dynamically while the bank is selected as the active bank. Users may freely enable/disable spread spectrum. $0=$ spread spectrum disabled 1 = spread spectrum enabled	READY/ ACTIVE
IDOA_SS_MODE	3 C	1	2	RW	Spread spectrum mode. $\begin{aligned} & 0=\text { disabled } \\ & 1=\text { center } \\ & 2=\text { invalid } \\ & 3=\text { Down } \end{aligned}$	READY if divider is currently driving the output else READY/ ACTIVE
IDOA_SS_STEP_NUM	3D	0	12	RW	Number of frequency steps in one quarter SSC modulation period, allows for frequency step every output clock.	
IDOA_SS_STEP_INTG	3F	0	5	RW	Divide ratio spread step size.	
IDOA_SS_STEP_RES	40	0	15	RW	Numerator of spread step size error term.	
IDOB_INTG	42	0	15	RW	The terms of an $a+b / c$ desired divider setting must be processed into IDOB_INTG, IDOB_RES, and IDOB_DEN register terms.intg $=$ floor $\left.\left(\left(a^{*} \mathrm{c}+\mathrm{b}\right)^{*} 128 / \mathrm{c}\right)-512\right)$.	READY if divider is currently driving the output else READY/ ACTIVE
IDOB_RES	44	0	15	RW	res $=\bmod \left(\mathrm{b}^{* 128, ~} \mathrm{c}\right)$	
IDOB_DEN	46	0	15	RW	den $=\mathrm{c}$	
IDOB_SS_ENA	48	0	1	RW	Spread spectrum enable. This is the only bank configuration field which may be changed dynamically while the bank is selected as the active bank. Users may freely enable/disable spread spectrum. $0=$ spread spectrum disabled 1 = spread spectrum enabled	READY/ ACTIVE

$\left.\begin{array}{|c|c|c|c|c|l|l|}\hline \text { Register Field Name } & \text { Address } & \text { Base } & \begin{array}{c}\text { Bit } \\ \text { Length }\end{array} & \text { R/W/RW } & \begin{array}{l}\text { Description }\end{array} & \begin{array}{c}\text { Device } \\ \text { Mode }\end{array} \\ \hline \text { ID0B_SS_MODE } & 48 & 1 & 2 & \text { RW } & \begin{array}{l}\text { Spread spectrum mode. } \\ 0=\text { disabled } \\ \text { READY if } \\ \text { divider is } \\ \text { currently } \\ \text { driving the } \\ \text { output } \\ \text { else }\end{array} \\ \text { READY/ } \\ \text { ACTIVE }\end{array}\right\}$

Register Field Name	Address	Base	Bit Length	R/W/RW	Description ID1B_SS_ENA	60

12. Si5332 32-QFN Specific Registers

Table 12.1. Si5332 32 QFN Registers

Register Field Name	Address	Base	Bit Length	R/W/RW	Description	Device Mode
OUTO_MODE	7A	0	4	RW	Software interpreted driver configuration. See Table 7.7 Driver Set Up Options on page 31.	READY
OUT0_DIV	7B	0	6	RW	Driver divider ratio. $0=\text { disabled }$ 1-63 = divide value	READY
OUTO_SKEW	7 C	0	3	RW	Skew control. Programmed as an unsigned integer. Can add delay of $35 \mathrm{ps} /$ step up to 280 ps.	READY
OUT0_STOP_HIGHZ	7D	0	1	RW	Driver output state when stopped. $\begin{aligned} & 0=\text { low-Z } \\ & 1 \text { = high-Z } \end{aligned}$	READY
OUTO_CMOS_INV	7D	4	2	RW	Sets the polarity of the two outputs in dual CMOS mode. $\begin{aligned} & 0=\text { no inversion } \\ & 1=\text { OUTOb inverted } \end{aligned}$	READY
OUT0_CMOS_SLEW	7E	0	2	RW	Controls CMOS slew rate from fast to slow. $\begin{aligned} & 00=\text { fastest } \\ & 01=\text { slow } \\ & 10=\text { slower } \\ & 11 \text { = slowest } \end{aligned}$	READY
OUTO_CMOS_STR	7E	2	1	RW	CMOS output impedance control. $\begin{aligned} & 0=50 \Omega \\ & 1=25 \Omega \end{aligned}$	READY
OUT1_MODE	7F	0	4	RW	Software interpreted driver configuration. See Table 7.7 Driver Set Up Options on page 31.	READY
OUT1_DIV	80	0	6	RW	Driver divider ratio. $0=\text { disabled }$ 1-63 = divide value	READY
OUT1_SKEW	81	0	3	RW	Skew control. Programmed as an unsigned integer. Can add delay of $35 \mathrm{ps} /$ step up to 280 ps.	READY
OUT1_STOP_HIGHZ	82	0	2	RW	Driver output state when stopped. $\begin{aligned} & 0=\text { low-Z } \\ & 1 \text { = high-Z } \end{aligned}$	READY

Register Field Name	Address	Base	Bit Length	R/W/RW	Description	Device Mode
OUT1_CMOS_INV	82	4	1	RW	Sets the polarity of the two outputs in dual CMOS mode. $\begin{aligned} & 0=\text { no inversion } \\ & 1=\text { OUT1b inverted } \end{aligned}$	READY
OUT1_CMOS_SLEW	83	0	1	RW	Controls CMOS slew rate from fast to slow. $\begin{aligned} & 00=\text { fastest } \\ & 01 \text { = slow } \\ & 10=\text { slower } \\ & 11 \text { = slowest } \end{aligned}$	READY
OUT1_CMOS_STR	83	2	1	RW	CMOS output impedance control. $\begin{aligned} & 0=50 \Omega \\ & 1=25 \Omega \end{aligned}$	READY
OUT2_MODE	89	0	4	RW	Software interpreted driver configuration. See Table 7.7 Driver Set Up Options on page 31.	READY
OUT2_DIV	8A	0	6	RW	Driver divider ratio. $\begin{aligned} & 0=\text { disabled } \\ & 1-63=\text { divide value } \end{aligned}$	READY
OUT2_SKEW	8B	0	3	RW	Skew control. Programmed as an unsigned integer. Can add delay of $35 \mathrm{ps} /$ step up to 280 ps.	READY
OUT2_STOP_HIGHZ	8C	0	2	RW	Driver output state when stopped. $\begin{aligned} & 0=\text { low-Z } \\ & 1=\text { high-Z } \end{aligned}$	READY
OUT2_CMOS_INV	8C	4	1	RW	Sets the polarity of the two outputs in dual CMOS mode. 0 = no inversion 1 = OUT2b inverted	READY
OUT2_CMOS_SLEW	8D	0	2	RW	Controls CMOS slew rate from fast to slow. $\begin{aligned} & 00=\text { fastest } \\ & 01 \text { = slow } \\ & 10=\text { slower } \\ & 11 \text { = slowest } \end{aligned}$	READY
OUT2_CMOS_STR	8D	2	1	RW	CMOS output impedance control. $\begin{aligned} & 0=50 \Omega \\ & 1=25 \Omega \end{aligned}$	READY
OUT3_MODE	98	0	4	RW	Software interpreted driver configuration. See Table 7.7 Driver Set Up Options on page 31.	READY

Register Field Name	Address	Base	Bit Length	R/W/RW	Description OUT3_DIV	99

Register Field Name	Address	Base	Bit Length	R/W/RW	Description	Device Mode
OUT4_CMOS_SLEW	AB	0	1	RW	Controls CMOS slew rate from fast to slow. $\begin{aligned} & 00=\text { fastest } \\ & 01 \text { = slow } \\ & 10=\text { slower } \\ & 11 \text { = slowest } \end{aligned}$	READY
OUT4_CMOS_STR	AB	2	1	RW	CMOS output impedance control. $\begin{aligned} & 0=50 \Omega \\ & 1=25 \Omega \end{aligned}$	READY
OUT5_MODE	AC	0	4	RW	Software interpreted driver configuration. See Table 7.7 Driver Set Up Options on page 31.	READY
OUT5_DIV	AD	0	6	RW	Driver divider ratio. $0=\text { disabled }$ 1-63 = divide value	READY
OUT5_SKEW	AE	0	3	RW	Skew control. Programmed as an unsigned integer. Can add delay of $35 \mathrm{ps} /$ step up to 280 ps.	READY
OUT5_STOP_HIGHZ	AF	0	1	RW	Driver output state when stopped. $\begin{aligned} & 0=\text { low }-Z \\ & 1=\text { high }-Z \end{aligned}$	READY
OUT5_CMOS_INV	AF	4	1	RW	Sets the polarity of the two outputs in dual CMOS mode. $0=$ no inversion 1 = OUT5b inverted	READY
OUT5_CMOS_SLEW	B0	0	1	RW	Controls CMOS slew rate from fast to slow. $\begin{aligned} & 00=\text { fastest } \\ & 01=\text { slow } \\ & 10=\text { slower } \\ & 11 \text { = slowest } \end{aligned}$	READY
OUT5_CMOS_STR	B0	2	1	RW	CMOS output impedance control. $\begin{aligned} & 0=50 \Omega \\ & 1=25 \Omega \end{aligned}$	READY
OUT2_OE	B6	3	1	RW	Output enable control for OUT2	READY/ ACTIVE
OUT3_OE	B6	6	1	RW	Output enable control for OUT3	READY/ ACTIVE
OUTO_OE	B6	0	1	RW	Output enable control for OUT0	READY/ ACTIVE
OUT1_OE	B6	1	1	RW	Output enable control for OUT1	READY/ ACTIVE

Register Field Name	Address	Base	Bit Length	R/W/RW	Description	Device Mode
OUT5_OE	B7	2	1	RW	Output enable control for OUT5	READY/ ACTIVE
OUT4_OE	B7	1	1	RW	Output enable control for OUT4	READY/ ACTIVE
CLKIN_2_CLK_SEL	73	0	2	RW	$\begin{aligned} & 0=\text { disabled } \\ & 1=\text { differential } \\ & 2=\text { CMOS DC } \\ & 3=\text { CMOS AC } \end{aligned}$	READY
IMUX_SEL	24	0	2	RW	Selects input mux clock source: $\begin{aligned} & 0=\text { Disabled } \\ & 1=\text { XOSC } \\ & 2=\text { CLKIN_2 } \\ & 3 \text { =Disabled } \end{aligned}$	READY

13. Si5332 40-QFN Specific Registers

Table 13.1. Si5332 40 QFN Registers

Register Field Name	Address	Base	Bit Length	R/W/RW	Description	Device Mode
OUTO_MODE	7A	0	4	RW	Software interpreted driver configuration. See Table 7.7 Driver Set Up Options on page 31.	READY
OUT0_DIV	7B	0	6	RW	Driver divider ratio. $0=\text { disabled }$ 1-63 = divide value	READY
OUTO_SKEW	7 C	0	3	RW	Skew control. Programmed as an unsigned integer. Can add delay of $35 \mathrm{ps} /$ step up to 280 ps.	READY
OUT0_STOP_HIGHZ	7D	0	1	RW	Driver output state when stopped. $\begin{aligned} & 0=\text { low-Z } \\ & 1 \text { = high-Z } \end{aligned}$	READY
OUTO_CMOS_INV	7D	4	2	RW	Sets the polarity of the two outputs in dual CMOS mode. $\begin{aligned} & 0=\text { no inversion } \\ & 1=\text { OUTOb inverted } \end{aligned}$	READY
OUT0_CMOS_SLEW	7E	0	2	RW	Controls CMOS slew rate from fast to slow. $\begin{aligned} & 00=\text { fastest } \\ & 01=\text { slow } \\ & 10=\text { slower } \\ & 11 \text { = slowest } \end{aligned}$	READY
OUTO_CMOS_STR	7E	2	1	RW	CMOS output impedance control. $\begin{aligned} & 0=50 \Omega \\ & 1=25 \Omega \end{aligned}$	READY
OUT1_MODE	7F	0	4	RW	Software interpreted driver configuration. See Table 7.7 Driver Set Up Options on page 31.	READY
OUT1_DIV	80	0	6	RW	Driver divider ratio. $0 \text { = disabled }$ 1-63 = divide value	READY
OUT1_SKEW	81	0	3	RW	Skew control. Programmed as an unsigned integer. Can add delay of $35 \mathrm{ps} /$ step up to 280 ps.	READY
OUT1_STOP_HIGHZ	82	0	2	RW	Driver output state when stopped. $\begin{aligned} & 0=\text { low-Z } \\ & 1 \text { = high-Z } \end{aligned}$	READY

Register Field Name	Address	Base	Bit Length	R/W/RW	Description	Device Mode
OUT1_CMOS_INV	82	4	1	RW	Sets the polarity of the two outputs in dual CMOS mode. $\begin{aligned} & 0=\text { no inversion } \\ & 1=\text { OUT1b inverted } \end{aligned}$	READY
OUT1_CMOS_SLEW	83	0	1	RW	Controls CMOS slew rate from fast to slow. $\begin{aligned} & 00=\text { fastest } \\ & 01=\text { slow } \\ & 10=\text { Slower } \\ & 11 \text { = slowest } \end{aligned}$	READY
OUT1_CMOS_STR	83	2	1	RW	CMOS output impedance control. $\begin{aligned} & 0=50 \Omega \\ & 1=25 \Omega \end{aligned}$	READY
OUT2_MODE	89	0	4	RW	Software interpreted driver configuration. See Table 7.7 Driver Set Up Options on page 31.	READY
OUT2_DIV	8A	0	6	RW	Driver divider ratio. $0=$ disabled 1-63 = divide value	READY
OUT2_SKEW	8B	0	3	RW	Skew control. Programmed as an unsigned integer. Can add delay of $35 \mathrm{ps} /$ step up to 280 ps.	READY
OUT2_STOP_HIGHZ	8C	0	2	RW	Driver output state when stopped. $\begin{aligned} & 0=\text { low-Z } \\ & 1=\text { high-Z } \end{aligned}$	READY
OUT2_CMOS_INV	8C	4	1	RW	Sets the polarity of the two outputs. $\begin{aligned} & 0=\text { no inversion } \\ & 1=\text { OUT2b inverted } \end{aligned}$	READY
OUT2_CMOS_SLEW	8D	0	2	RW	Controls CMOS slew rate from fast to slow. $\begin{aligned} & 00=\text { fastest } \\ & 01=\text { slow } \\ & 10=\text { slower } \\ & 11 \text { = slowest } \end{aligned}$	READY
OUT2_CMOS_STR	8D	2	1	RW	CMOS output impedance control. $\begin{aligned} & 0=50 \Omega \\ & 1=25 \Omega \end{aligned}$	READY
OUT3_MODE	8E	0	4	RW	Software interpreted driver configuration. See Table 7.7 Driver Set Up Options on page 31.	READY

Register Field Name	Address	Base	Bit Length	R/W/RW	Description	Device Mode
OUT3_DIV	8F	0	6	RW	Driver divider ratio. $0=\text { disabled }$ 1-63 = divide value	READY
OUT3_SKEW	90	0	3	RW	Skew control. Programmed as an unsigned integer. Can add delay of $35 \mathrm{ps} /$ step up to 280 ps.	READY
OUT3_STOP_HIGHZ	91	0	2	RW	Driver output state when stopped. $\begin{aligned} & 0=\text { low-Z } \\ & 1=\text { high-Z } \end{aligned}$	READY
OUT3_CMOS_INV	91	4	1	RW	Sets the polarity of the two outputs in dual CMOS mode. $\begin{aligned} & 0=\text { no inversion } \\ & 1=\text { OUT3b inverted } \end{aligned}$	READY
OUT3_CMOS_SLEW	92	0	1	RW	Controls CMOS slew rate from fast to slow. $\begin{aligned} & 00=\text { fastest } \\ & 01 \text { = slow } \\ & 10=\text { slower } \\ & 11 \text { = slowest } \end{aligned}$	READY
OUT3_CMOS_STR	92	2	1	RW	CMOS output impedance control. $\begin{aligned} & 0=50 \Omega \\ & 1=25 \Omega \end{aligned}$	READY
OUT4_MODE	98	0	4	RW	Software interpreted driver configuration. See Table 7.7 Driver Set Up Options on page 31.	READY
OUT4_DIV	99	0	6	RW	Driver divider ratio. $0=\text { disabled }$ 1-63 = divide value	READY
OUT4_SKEW	9 A	0	3	RW	Skew control. Programmed as an unsigned integer. Can add delay of $35 \mathrm{ps} /$ step up to 280 ps.	READY
OUT4_STOP_HIGHZ	9 B	0	1	RW	Driver output state when stopped. $\begin{aligned} & 0=\text { low-Z } \\ & 1=\text { high-Z } \end{aligned}$	READY
OUT4_CMOS_INV	9B	4	1	RW	Sets the polarity of the two outputs in dual CMOS mode. $0=$ no inversion 1 = OUT4b inverted	READY

Register Field Name	Address	Base	Bit Length	R/W/RW	Description	Device Mode
OUT4_CMOS_SLEW	9 C	0	1	RW	Controls CMOS slew rate from fast to slow. $\begin{aligned} & 00=\text { fastest } \\ & 01=\text { slow } \\ & 10=\text { Slower } \\ & 11 \text { = slowest } \end{aligned}$	READY
OUT4_CMOS_STR	9 C	2	1	RW	CMOS output impedance control. $\begin{aligned} & 0=50 \Omega \\ & 1=25 \Omega \end{aligned}$	READY
OUT5_MODE	9D	0	4	RW	Software interpreted driver configuration. See Table 7.7 Driver Set Up Options on page 31.	READY
OUT5_DIV	9E	0	6	RW	Driver divider ratio. $\begin{aligned} & 0=\text { disabled } \\ & 1-63=\text { divide value } \end{aligned}$	READY
OUT5_SKEW	9 F	0	3	RW	Skew control. Programmed as an unsigned integer. Can add delay of $35 \mathrm{ps} /$ step up to 280 ps.	READY
OUT5_STOP_HIGHZ	A0	0	1	RW	Driver output state when stopped. $\begin{aligned} & 0=\text { low }-Z \\ & 1=\text { high }-Z \end{aligned}$	READY
OUT5_CMOS_INV	A0	4	1	RW	Sets the polarity of the two outputs in dual CMOS mode. $\begin{aligned} & 0=\text { no inversion } \\ & 1=\text { OUT5b inverted } \end{aligned}$	READY
OUT5_CMOS_SLEW	A1	0	1	RW	Controls CMOS slew rate from fast to slow. $\begin{aligned} & 00=\text { fastest } \\ & 01 \text { = slow } \\ & 10=\text { slower } \\ & 11 \text { = slowest } \end{aligned}$	READY
OUT5_CMOS_STR	A1	2	1	RW	CMOS output impedance control. $\begin{aligned} & 0=50 \Omega \\ & 1=25 \Omega \end{aligned}$	READY
OUT6_MODE	A7	0	4	RW	Software interpreted driver configuration. See Table 7.7 Driver Set Up Options on page 31.	READY
OUT6_DIV	A8	0	6	RW	Driver divider ratio. $\begin{aligned} & 0=\text { disabled } \\ & 1-63=\text { divide value } \end{aligned}$	READY
OUT6_SKEW	A9	0	3	RW	Skew control. Programmed as an unsigned integer. Can add delay of $35 \mathrm{ps} /$ step up to 280 ps.	READY

Register Field Name	Address	Base	Bit Length	R/W/RW	Description	Device Mode
OUT6_STOP_HIGHZ	AA	0	1	RW	Driver output state when stopped. $\begin{aligned} & 0=\text { low-Z } \\ & 1=\text { high-Z } \end{aligned}$	READY
OUT6_CMOS_INV	AA	4	1	RW	Sets the polarity of the two outputs in dual CMOS mode. $\begin{aligned} & 0=\text { no inversion } \\ & 1=\text { OUT6b inverted } \end{aligned}$	READY
OUT6_CMOS_SLEW	AB	0	1	RW	Controls CMOS slew rate from fast to slow. $\begin{aligned} & 00=\text { fastest } \\ & 01=\text { slow } \\ & 10=\text { slower } \\ & 11=\text { slowest } \end{aligned}$	READY
OUT6_CMOS_STR	AB	2	1	RW	CMOS output impedance control. $\begin{aligned} & 0=50 \Omega \\ & 1=25 \Omega \end{aligned}$	READY
OUT7_MODE	AC	0	4	RW	Software interpreted driver configuration. See Table 7.7 Driver Set Up Options on page 31.	READY
OUT7_DIV	AD	0	6	RW	Driver divider ratio. $0=$ disabled 1-63 = divide value	READY
OUT7_SKEW	AE	0	3	RW	Skew control. Programmed as an unsigned integer. Can add delay of $35 \mathrm{ps} /$ step up to 280 ps.	READY
OUT7_STOP_HIGHZ	AF	0	1	RW	Driver output state when stopped. $\begin{aligned} & 0=\text { low-Z } \\ & 1=\text { high-Z } \end{aligned}$	READY
OUT7_CMOS_INV	AF	4	1	RW	Sets the polarity of the two outputs in dual CMOS mode. $\begin{aligned} & 0=\text { no inversion } \\ & 1=\text { OUT7b inverted } \end{aligned}$	READY
OUT7_CMOS_SLEW	B0	0	1	RW	Controls CMOS slew rate from fast to slow. $\begin{aligned} & 00=\text { fastest } \\ & 01=\text { slow } \\ & 10=\text { slower } \\ & 11 \text { = slowest } \end{aligned}$	READY
OUT7_CMOS_STR	B0	2	1	RW	CMOS output impedance control. $\begin{aligned} & 0=50 \Omega \\ & 1=25 \Omega \end{aligned}$	READY

Register Field Name	Address	Base	Bit Length	R/W/RW	Description	Device Mode
OUT3_OE	B6	4	1	RW	Output enable control for OUT3	READY/ ACTIVE
OUT2_OE	B6	3	1	RW	Output enable control for OUT2	READY/ ACTIVE
OUT5_OE	B6	7	1	RW	Output enable control for OUT5	READY/ ACTIVE
OUT4_OE	B6	6	1	RW	Output enable control for OUT4	READY/ ACTIVE
OUTO_OE	B6	0	1	RW	Output enable control for OUTO	READY/ ACTIVE
OUT1_OE	B6	1	1	RW	Output enable control for OUT1	READY/ ACTIVE
OUT7_OE	B7	2	1	RW	Output enable control for OUT7	READY/ ACTIVE
OUT6_OE	B7	1	1	RW	Output enable control for OUT6	READY/ ACTIVE
CLKIN_2_CLK_SEL	73	0	2	RW	Select the CLKIN_2 input buffer mode. $\begin{aligned} & 0=\text { disabled } \\ & 1=\text { differential } \\ & 2=\text { CMOS DC } \\ & 3=\text { CMOS AC } \end{aligned}$	READY
CLKIN_3_CLK_SEL	74	0	2	RW	Select the CLKIN_3 input buffer mode. $\begin{aligned} & 0=\text { disabled } \\ & 1=\text { differential } \\ & 2=\text { CMOS DC } \\ & 3=\text { CMOS AC } \end{aligned}$	READY
IMUX_SEL	24	0	2	RW	Selects input mux clock source: $\begin{aligned} & 0=\text { Disabled } \\ & 1=\text { XOSC } \\ & 2=\text { CLKIN_2 } \\ & 3=C L K I N _3 \end{aligned}$	READY

14. Si5332 48-QFN Specific Registers

Table 14.1. Si5332 48 QFN Registers

Register Field Name	Address	Base	Bit Length	R/W/RW	Description	Device Mode
OUTO_MODE	7 A	0	4	RW	Software interpreted driver configuration. See Table 7.7 Driver Set Up Options on page 31.	READY
OUTO_DIV	7B	0	6	RW	Driver divider ratio. $0=\text { disabled }$ 1-63 = divide value	READY
OUTO_SKEW	7 C	0	3	RW	Skew control. Programmed as an unsigned integer. Can add delay of $35 \mathrm{ps} /$ step up to 280 ps.	READY
OUT0_STOP_HIGHZ	7D	0	1	RW	Driver output state when stopped. $\begin{aligned} & 0=\text { low-Z } \\ & 1=\text { high-Z } \end{aligned}$	READY
OUTO_CMOS_INV	7D	4	2	RW	Sets the polarity of the two outputs in dual CMOS mode. $\begin{aligned} & 0=\text { no inversion } \\ & 1=\text { OUTOb inverted } \end{aligned}$	READY
OUTO_CMOS_SLEW	7E	0	2	RW	Controls CMOS slew rate from fast to slow. $\begin{aligned} & 00=\text { fastest } \\ & 01 \text { = slow } \\ & 10=\text { slower } \\ & 11 \text { = slowest } \end{aligned}$	READY
OUTO_CMOS_STR	7E	2	1	RW	CMOS output impedance control. $\begin{aligned} & 0=50 \Omega \\ & 1=25 \Omega \end{aligned}$	READY
OUT1_MODE	7F	0	4	RW	Software interpreted driver configuration. See Table 7.7 Driver Set Up Options on page 31.	READY
OUT1_DIV	80	0	6	RW	Driver divider ratio. $0 \text { = disabled }$ 1-63 = divide value	READY
OUT1_SKEW	81	0	3	RW	Skew control. Programmed as an unsigned integer. Can add delay of $35 \mathrm{ps} /$ step up to 280 ps.	READY
OUT1_STOP_HIGHZ	82	0	2	RW	Driver output state when stopped. $\begin{aligned} & 0=\text { low-Z } \\ & 1 \text { = high-Z } \end{aligned}$	READY

Register Field Name	Address	Base	Bit Length	R/W/RW	Description	Device Mode
OUT1_CMOS_INV	82	4	1	RW	Sets the polarity of the two outputs in dual CMOS mode. $\begin{aligned} & 0=\text { no inversion } \\ & 1=\text { OUT1b inverted } \end{aligned}$	READY
OUT1_CMOS_SLEW	83	0	1	RW	Controls CMOS slew rate from fast to slow. $\begin{aligned} & 00=\text { fastest } \\ & 01 \text { = slow } \\ & 10=\text { slower } \\ & 11 \text { = slowest } \end{aligned}$	READY
OUT1_CMOS_STR	83	2	1	RW	CMOS output impedance control. $\begin{aligned} & 0=50 \Omega \\ & 1=25 \Omega \end{aligned}$	READY
OUT2_MODE	84	0	4	RW	Software interpreted driver configuration. See Table 7.7 Driver Set Up Options on page 31.	READY
OUT2_DIV	85	0	6	RW	Driver divider ratio. $\begin{aligned} & 0=\text { disabled } \\ & 1-63=\text { divide value } \end{aligned}$	READY
OUT2_SKEW	86	0	3	RW	Skew control. Programmed as an unsigned integer. Can add delay of $35 \mathrm{ps} /$ step up to 280 ps.	READY
OUT2_STOP_HIGHZ	87	0	1	RW	Driver output state when stopped. $\begin{aligned} & 0=\text { low-Z } \\ & 1=\text { high-Z } \end{aligned}$	READY
OUT2_CMOS_INV	87	4	1	RW	Sets the polarity of the two outputs in dual CMOS mode. 0 = no inversion 1 = OUT2b inverted	READY
OUT2_CMOS_SLEW	88	0	1	RW	Controls CMOS slew rate from fast to slow. $\begin{aligned} & 00=\text { fastest } \\ & 01 \text { = slow } \\ & 10=\text { slower } \\ & 11 \text { = slowest } \end{aligned}$	READY
OUT2_CMOS_STR	88	2	1	RW	CMOS output impedance control. $\begin{aligned} & 0=50 \Omega \\ & 1=25 \Omega \end{aligned}$	READY
OUT3_MODE	89	0	4	RW	Software interpreted driver configuration. See Table 7.7 Driver Set Up Options on page 31.	READY

Register Field Name	Address	Base	Bit Length	R/W/RW	Description	Device Mode
OUT3_DIV	8A	0	6	RW	Driver divider ratio. $\begin{aligned} & 0=\text { disabled } \\ & 1-63=\text { divide value } \end{aligned}$	READY
OUT3_SKEW	8B	0	3	RW	Skew control. Programmed as an unsigned integer. Can add delay of $35 \mathrm{ps} /$ step up to 280 ps.	READY
OUT3_STOP_HIGHZ	8C	0	2	RW	Driver output state when stopped. $\begin{aligned} & 0=\text { low }-Z \\ & 1=\text { high }-Z \end{aligned}$	READY
OUT3_CMOS_INV	8C	4	1	RW	Sets the polarity of the two outputs in dual CMOS mode. $\begin{aligned} & 0=\text { no inversion } \\ & 1=\text { OUT3b inverted } \end{aligned}$	READY
OUT3_CMOS_SLEW	8D	0	2	RW	Controls CMOS slew rate from fast to slow. $\begin{aligned} & 00=\text { fastest } \\ & 01=\text { slow } \\ & 10=\text { slower } \\ & 11=\text { slowest } \end{aligned}$	READY
OUT3_CMOS_STR	8D	2	1	RW	CMOS output impedance control. $\begin{aligned} & 0=50 \Omega \\ & 1=25 \Omega \end{aligned}$	READY
OUT4_MODE	8E	0	4	RW	Software interpreted driver configuration. See Table 7.7 Driver Set Up Options on page 31.	READY
OUT4_DIV	8F	0	6	RW	Driver divider ratio. $0 \text { = disabled }$ 1-63 = divide value	READY
OUT4_SKEW	90	0	3	RW	Skew control. Programmed as an unsigned integer. Can add delay of $35 \mathrm{ps} /$ step up to 280 ps.	READY
OUT4_STOP_HIGHZ	91	0	2	RW	Driver output state when stopped. $\begin{aligned} & 0=\text { low-Z } \\ & 1 \text { = high-Z } \end{aligned}$	READY
OUT4_CMOS_INV	91	4	1	RW	Sets the polarity of the two outputs in dual CMOS mode. $0=$ no inversion 1 = OUT4b inverted	READY

Register Field Name	Address	Base	Bit Length	R/W/RW	Description	Device Mode
OUT4_CMOS_SLEW	92	0	1	RW	Controls CMOS slew rate from fast to slow. $\begin{aligned} & 00=\text { fastest } \\ & 01 \text { = slow } \\ & 10=\text { slower } \\ & 11 \text { = slowest } \end{aligned}$	READY
OUT4_CMOS_STR	92	2	1	RW	CMOS output impedance control. $\begin{aligned} & 0=50 \Omega \\ & 1=25 \Omega \end{aligned}$	READY
OUT5_MODE	93	0	4	RW	Software interpreted driver configuration. See Table 7.7 Driver Set Up Options on page 31.	READY
OUT5_DIV	94	0	6	RW	Driver divider ratio. $0=\text { disabled }$ 1-63 = divide value	READY
OUT5_SKEW	95	0	3	RW	Skew control. Programmed as an unsigned integer. Can add delay of $35 \mathrm{ps} /$ step up to 280 ps.	READY
OUT5_STOP_HIGHZ	96	0	2	RW	Driver output state when stopped. $\begin{aligned} & 0=\text { low-Z } \\ & 1=\text { high-Z } \end{aligned}$	READY
OUT5_CMOS_INV	96	4	1	RW	Sets the polarity of the two outputs in dual CMOS mode. $\begin{aligned} & 0=\text { no inversion } \\ & 1=\text { OUT5b inverted } \end{aligned}$	READY
OUT5_CMOS_SLEW	97	0	1	RW	Controls CMOS slew rate from fast to slow. $\begin{aligned} & 00=\text { fastest } \\ & 01=\text { slow } \\ & 10=\text { slower } \\ & 11 \text { = slowest } \end{aligned}$	READY
OUT5_CMOS_STR	97	2	1	RW	CMOS output impedance control. $\begin{aligned} & 0=50 \Omega \\ & 1=25 \Omega \end{aligned}$	READY
OUT6_MODE	98	0	4	RW	Software interpreted driver configuration. See Table 7.7 Driver Set Up Options on page 31.	READY
OUT6_DIV	99	0	6	RW	Driver divider ratio. $0=$ disabled 1-63 = divide value	READY
OUT6_SKEW	9 A	0	3	RW	Skew control. Programmed as an unsigned integer. Can add delay of $35 \mathrm{ps} /$ step up to 280 ps.	READY

Register Field Name	Address	Base	Bit Length	R/W/RW	Description	Device Mode
OUT6_STOP_HIGHZ	9 B	0	1	RW	Driver output state when stopped. $\begin{aligned} & 0=\text { low-Z } \\ & 1=\text { high-Z } \end{aligned}$	READY
OUT6_CMOS_INV	9 B	4	1	RW	Sets the polarity of the two outputs in dual CMOS mode. $\begin{aligned} & 0=\text { no inversion } \\ & 1=\text { OUT6b inverted } \end{aligned}$	READY
OUT6_CMOS_SLEW	9 C	0	1	RW	Controls CMOS slew rate from fast to slow. $\begin{aligned} & 00=\text { fastest } \\ & 01=\text { slow } \\ & 10=\text { slower } \\ & 11=\text { slowest } \end{aligned}$	READY
OUT6_CMOS_STR	9 C	2	1	RW	CMOS output impedance control. $\begin{aligned} & 0=50 \Omega \\ & 1=25 \Omega \end{aligned}$	READY
OUT7_MODE	9D	0	4	RW	Software interpreted driver configuration. See Table 7.7 Driver Set Up Options on page 31.	READY
OUT7_DIV	9E	0	6	RW	Driver divider ratio. $0=$ disabled 1-63 = divide value	READY
OUT7_SKEW	9F	0	3	RW	Skew control. Programmed as an unsigned integer. Can add delay of $35 \mathrm{ps} /$ step up to 280 ps.	READY
OUT7_STOP_HIGHZ	A0	0	1	RW	Driver output state when stopped. $\begin{aligned} & 0=\text { low-Z } \\ & 1=\text { high-Z } \end{aligned}$	READY
OUT7_CMOS_INV	A0	4	1	RW	Sets the polarity of the two outputs in dual CMOS mode. $\begin{aligned} & 0=\text { no inversion } \\ & 1=\text { OUT7b inverted } \end{aligned}$	READY
OUT7_CMOS_SLEW	A1	0	1	RW	Controls CMOS slew rate from fast to slow. $\begin{aligned} & 00=\text { fastest } \\ & 01=\text { slow } \\ & 10=\text { slower } \\ & 11 \text { = slowest } \end{aligned}$	READY
OUT7_CMOS_STR	A1	2	1	RW	CMOS output impedance control. $\begin{aligned} & 0=50 \Omega \\ & 1=25 \Omega \end{aligned}$	READY

Register Field Name	Address	Base	Bit Length	R/W/RW	Description	Device Mode
OUT8_MODE	A2	0	4	RW	Software interpreted driver configuration. See Table 7.7 Driver Set Up Options on page 31.	READY
OUT8_DIV	A3	0	6	RW	Driver divider ratio. $0=\text { disabled }$ 1-63 = divide value	READY
OUT8_SKEW	A4	0	3	RW	Skew control. Programmed as an unsigned integer. Can add delay of $35 \mathrm{ps} /$ step up to 280 ps.	READY
OUT8_STOP_HIGHZ	A5	0	1	RW	Driver output state when stopped. $\begin{aligned} & 0=\text { low-Z } \\ & 1=\text { high-Z } \end{aligned}$	READY
OUT8_CMOS_INV	A5	4	1	RW	Sets the polarity of the two outputs in dual CMOS mode. $\begin{aligned} & 0=\text { no inversion } \\ & 1=\text { OUT8b inverted } \end{aligned}$	READY
OUT8_CMOS_SLEW	A6	0	1	RW	Controls CMOS slew rate from fast to slow. $\begin{aligned} & 00=\text { fastest } \\ & 01 \text { = slow } \\ & 10=\text { slower } \\ & 11 \text { = slowest } \end{aligned}$	READY
OUT8_CMOS_STR	A6	2	2	RW	CMOS output impedance control. $\begin{aligned} & 0=50 \Omega \\ & 1=25 \Omega \end{aligned}$	READY
OUT9_MODE	A7	0	4	RW	Software interpreted driver configuration. See Table 7.7 Driver Set Up Options on page 31.	READY
OUT9_DIV	A8	0	6	RW	Driver divider ratio. $\begin{aligned} & 0=\text { disabled } \\ & 1-63=\text { divide value } \end{aligned}$	READY
OUT9_SKEW	A9	0	3	RW	Skew control. Programmed as an unsigned integer. Can add delay of $35 \mathrm{ps} /$ step up to 280 ps.	READY
OUT9_STOP_HIGHZ	AA	0	1	RW	Driver output state when stopped. $\begin{aligned} & 0=\text { low-Z } \\ & 1=\text { high-Z } \end{aligned}$	READY
OUT9_CMOS_INV	AA	4	1	RW	Sets the polarity of the two outputs in dual CMOS mode. $\begin{aligned} & 0=\text { no inversion } \\ & 1=\text { OUT9b inverted } \end{aligned}$	READY

Register Field Name	Address	Base	Bit Length	R/W/RW	Description	Device Mode
OUT9_CMOS_SLEW	AB	0	1	RW	Controls CMOS slew rate from fast to slow. $\begin{aligned} & 00=\text { fastest } \\ & 01=\text { slow } \\ & 10=\text { slower } \\ & 11 \text { = slowest } \end{aligned}$	READY
OUT9_CMOS_STR	AB	2	1	RW	CMOS output impedance control. $\begin{aligned} & 0=50 \Omega \\ & 1=25 \Omega \end{aligned}$	READY
OUT10_MODE	AC	0	4	RW	Software interpreted driver configuration. See Table 7.7 Driver Set Up Options on page 31.	READY
OUT10_DIV	AD	0	6	RW	Driver divider ratio. $0=\text { disabled }$ 1-63 = divide value	READY
OUT10_SKEW	AE	0	3	RW	Skew control. Programmed as an unsigned integer. Can add delay of $35 \mathrm{ps} /$ step up to 280 ps.	READY
OUT10_STOP_HIGHZ	AF	0	1	RW	Driver output state when stopped. $\begin{aligned} & 0=\text { low-Z } \\ & 1 \text { = high-Z } \end{aligned}$	READY
OUT10_CMOS_INV	AF	4	1	RW	Sets the polarity of the two outputs in dual CMOS mode. $0=$ no inversion 1 = OUT10b inverted	READY
OUT10_CMOS_SLEW	B0	0	1	RW	Controls CMOS slew rate from fast to slow. $\begin{aligned} & 00=\text { fastest } \\ & 01 \text { = slow } \\ & 10=\text { slower } \\ & 11 \text { = slowest } \end{aligned}$	READY
OUT10_CMOS_STR	B0	2	1	RW	CMOS output impedance control. $\begin{aligned} & 0=50 \Omega \\ & 1=25 \Omega \end{aligned}$	READY
OUT11_MODE	B1	0	4	RW	Software interpreted driver configuration. See Table 7.7 Driver Set Up Options on page 31.	READY
OUT11_DIV	B2	0	6	RW	Driver divider ratio. $0=\text { disabled }$ 1-63 = divide value	READY
OUT11_SKEW	B3	0	3	RW	Skew control. Programmed as an unsigned integer. Can add delay of $35 \mathrm{ps} /$ step up to 280 ps.	READY

\(\left.$$
\begin{array}{|c|c|c|c|c|l|l|}\hline \text { Register Field Name } & \text { Address } & \text { Base } & \begin{array}{l}\text { Bit } \\
\text { Length }\end{array}
$$ \& R/W/RW \& Description \& Device

Mode\end{array}\right]\)| READY |
| :--- |
| OUT11_STOP_HIGHZ |
| B4 |

\(\left.$$
\begin{array}{|c|c|c|c|c|l|c|}\hline \text { Register Field Name } & \text { Address } & \text { Base } & \begin{array}{c}\text { Bit } \\
\text { Length }\end{array} & \text { R/W/RW } & \text { Description } & \begin{array}{c}\text { Device } \\
\text { Mode }\end{array} \\
\hline \text { CLKIN_2_CLK_SEL } & 73 & 0 & 2 & \text { RW } & \begin{array}{l}\text { Select the CLKIN_2 input buffer mode. } \\
0=\text { disabled } \\
1=\text { differential } \\
2=\text { CMOS DC }\end{array}
$$ \& READY

3=CMOS AC\end{array}\right]\)| R |
| :--- |

Quality
skyworksinc.com/quality

Support \& Resources

skyworksinc.com/support

Copyright © 2022 Skyworks Solutions, Inc. All Rights Reserved.
nformation in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks' Terms and Conditions of Sale.

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NONINFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of Skyworks' published specifications or parameters.

Skyworks, the Skyworks symbol, Sky5 ${ }^{\oplus}$, SkyOne ${ }^{\oplus}$, SkyBlue ${ }^{\text {Tm }}$, Skyworks Green ${ }^{\text {m }}$, Clockbuilder ${ }^{\ominus}$, DSPLL® ${ }^{\oplus}$, ISOmodem ${ }^{\ominus}$, ProSLIC ${ }^{\ominus}$, and SiPHY ${ }^{\oplus}$ are trademarks or registered trademarks of Skyworks Solutions, Inc. or its subsidiaries in the United States and other countries. Third-party brands and names are for identification purposes only and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.

