

Si52212, Si52208, Si52204, and Si52202: PCI-Express Gen 1 to Gen 6 and SRIS Clock Generator

Applications

- Servers
- Storage
- Data Centers
- PCIe Add-on Cards
- Network Interface Cards (NIC)
- Graphics Adapter Cards
- Multi-function Printers
- Digital Single-Lens Reflex (DSLR) Cameras
- Digital Still Cameras
- Digital Video Cameras
- Docking Stations

Key Features

- 12/8/4/2-output low-power, push-pull HCSL compatible PCI-Express Gen 1, Gen 2, Gen 3, Gen 4, Gen 5, Gen 6, and SRIS-compliant outputs
- Low jitter: 0.085 ps rms, Gen 6
- Individual hardware control pins and I²C controls for Output Enable, Spread Spectrum Enable and Frequency Select
- Triangular spread spectrum for EMI reduction, down spread 0.25% or 0.5%
- Internal 100 Ω or 85 Ω line matching
- Adjustable output slew rate
- Power down (PWRDNb) function supports Wake-on LAN (except Si52202)
- One non-spread, LVMCOS reference clock output (except Si52202)
- Frequency Select to select 133 MHz or 200 MHz (except Si52202)
- 25 MHz crystal input or clock input
- I²C support with readback capabilities
- Extended temperature: -40 to 85 °C
- 1.5–1.8 V power supply, with separate VDD and VDD_IO
- Small QFN packages
- Pb-free, RoHS-6 compliant

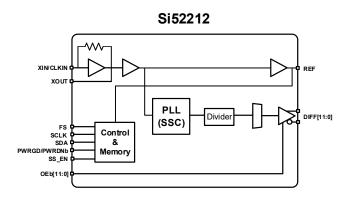
Description

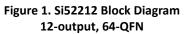
The Si52212, Si52208, Si52204, and Si52202 are a high performance and low power PCI Express clock generator family for 1.5 V to 1.8 V PCIe Gen 1/2/3/4/5/6 and SRIS applications. The Si52212, Si52208, and Si52204 can source twelve, eight, and four 100 MHz PCIe differential clock outputs, respectively, plus one 25 MHz LVCMOS reference clock output. The Si52202 can source two 100 MHz PCIe clock outputs only. All differential clock outputs are compliant to PCIe Gen1/2/3/4/5 common clock and separate reference clock architectures specifications.

The Si52212, Si52208, Si52204, and Si52202 feature individual hardware control pins for enabling and disabling each output, spread spectrum enable/disable for EMI reduction, and frequency select to select 100 MHz, 133 MHz, or 200 MHz differential output frequencies. These features can also be controlled via I^2C .

The small footprint and low power consumption make this family of PCIe clock generators ideal for industrial and consumer applications.

For more information about PCI-Express, Skyworks complete PCIe portfolio, application notes, and design tools, including the Skyworks PCIe Clock Jitter Tool for PCI-Express compliance, please visit the Skyworks PCI Express Learning Center.

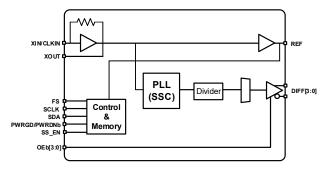
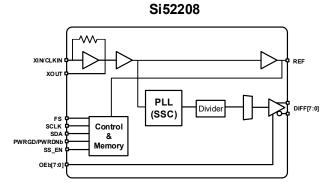
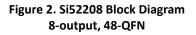
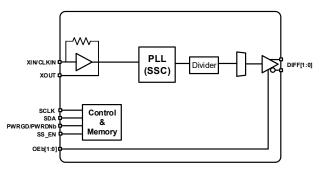


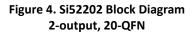

Skyworks Green[™] products are compliant with all applicable legislation and are halogen-free. For additional information, refer to *Skyworks Definition of Green*[™], document number SQ04–0074.

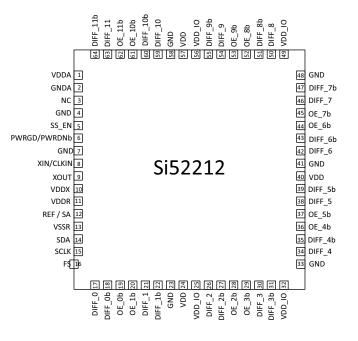

1. Feature List

- 12/8/4/2-output 100 MHz PCIe Gen 1/2/3/4/5/6 and SRIS compliant clock generator, with push-pull HCSL output drivers
 - High port count with push-pull HCSL outputs to support highly integrated solution, eliminating external resistors for the HCSL output drivers
- Low jitter of 0.085 ps rms max to meet PCIe Gen 6 specifications with design margin
- Low power consumption.
 - Lowest power consumption in the industry for a 2-output PCIe clock generator
- Individual hardware control pins and I²C controls for Output Enable, Spread Spectrum Enable and Frequency Select
 - Output Enable function easily disables unused outputs for power saving
 - Spread Enable function to turn on/off spread spectrum and to select spread levels, either down spread 0.25% or 0.5%
 - Frequency Select function to select output frequency of 100 MHz, 133 MHz, or 200 MHz (except Si52202 where the output frequency is limited to 100 MHz. Please contact Skyworks for 133 MHz or 200 MHz in Si52202)
 - All above functions are controlled by individual hardware pins or I^2C
- Internal 100 Ω or 85 Ω impedance matching
 - Eliminates external line matching resistor to reduce board space
- Adjustable slew rate to improve signal quality for different applications and board designs
- Power-down (PWRDNb) function supports Wake-on LAN (except Si52202)
- One non-spread, 25 MHz LVMCOS reference clock output (except Si52202)
 A buffered 25 MHz LVCMOS clock output to drive ASICS or SoCs on board
- 25 MHz reference input
 - Supports a standard crystal or clock input for flexibility
- I²C support with read-back capabilities
- 1.5 V to 1.8 V power supply with separate VDD and VDD_IO (1.05 V to 1.8 V)
- Temperature range: -40 °C to 85 °C
- Small QFN packages to optimize board space. Smallest 2-output PCIe clock generator in the industry
 - 64-pin QFN (9 x 9 mm): 12-output
 - 48-pin QFN (6 x 6 mm): 8-output
 - 32-pin QFN (5 x 5 mm): 4-output
 - 20-pin QFN (3 x 3 mm): 2-output
- Pb-free, RoHS-6 compliant

2. Functional Block Diagrams


Figure 3. Si52204 Block Diagram 4-output, 32-QFN


Si52202

3. Pin Descriptions

3.1. Si52212 Pin Descriptions

Figure 5	. Si52212	64-Pin	QFN	Pinout
----------	-----------	--------	-----	--------

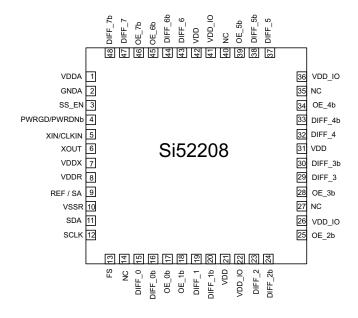
Table 1. Si	2212 Signal	l Descriptions
-------------	-------------	----------------

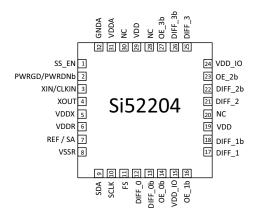
Pin #	Name	Туре	Description
1	VDDA	PWR	Analog Power Supply
2	GNDA	PWR	Analog Ground
3	NC		No connect
4	GND	GND	Ground
5	SS_EN	I	Spread spectrum enable pin. 0 = -0.25% spread, mid = Off, 1 = -0.5% spread (This pin has an internal 100 k Ω pull-up)
6	PWRGD/ PWRDNb	I, PU	Active low input pin asserts power down (PDb) and disables all outputs (this pin has an internal 100 k Ω pull-up). Refer to settings of Byte 2, Bit2 and Bit3 for REF. Settings for Bit3 (REF_OE) will take precedence for REF.
7	GND	GND	Ground
8	XIN/CLKIN	I	25.00 MHz crystal input or 25 MHz Clock Inputs
9	XOUT	0	25.00 MHz crystal output, Float XOUT if using only CLKIN (Clock input)
10	VDDX	PWR	Power supply for crystal
11	VDDR	PWR	Power supply for REF output
12	REF /SA	0/1	REF = 25 MHz LVCMOS output. SA = Address select for I2C. When part is powered up, SA will be latched to select the I ² C address. Refer to Table 12, "SA State on First Application of PWRDNb," on page 29. Refer also to "Feature List" on page 2 for termination (this pin has an internal 60 k Ω pull-up).
13	VSSR	GND	Ground
14	SDA	I/O	I ² C compatible SDATA
15	SCLK	I	I ² C compatible SCLOCK
16	FS	I	Frequency select pin, 0 = 100 MHz, mid = 200 MHz, 1 = 133 MHz (this pin has an internal 100 k Ω pull-down)
17	DIFF_0	O, DIF	0.7 V, 100 MHz differential clock

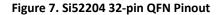
20 OE_1b I, PDOutput enable for DIFF_1 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out21DIFF_1O, DIFO, 7V, 100 MHz differential clock22DIFF_1bO, DIFO, 7V, 100 MHz differential clock23GNDGNDGround24VDDPWRPower supply25VDD_1CO, 7V, 100 MHz differential clock26DIFF_2O, DIFO, 7V, 100 MHz differential clock27DIFF_2bO, DIFO, 7V, 100 MHz differential clock28OE_2bI, PDOutput enable for DIFF_2 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out29OE_3bI, PDOutput enable for DIFF_2 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out30DIFF_3O, DIFO, 7V, 100 MHz differential clock31DIFF_3bO, DIFO, 7V, 100 MHz differential clock32VDD_IOPWROutput power supply33GNDGNDGround34DIFF_4O, DIFO, 7V, 100 MHz differential clock35DIFF_4bO, DIFO, 7V, 100 MHz differential clock36OE_4bI, PDOutput enable for DIFF_4 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out37OE_5bI, PDOutput enable for DIFF_4 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out38DIFF_5O, DIFO, 7V, 100 MHz differential clock39DIFF_5b <t< th=""><th>Pin #</th><th>Name</th><th>Туре</th><th>Description</th></t<>	Pin #	Name	Туре	Description
19 OE_0b I, PD Output enable for DIFF_0 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out 20 OE_1b I, PD Output enable for DIFF_1 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out 21 DIFF_1 O, DIF O.7 V, 100 MHz differential clock 22 DIFF_1b O, DIF O.7 V, 100 MHz differential clock 24 VDD PWR Power supply 25 VDD_1O PWR Output enable for DIFF_2 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out 26 DIFF_2 O, DIF O.V V.100 MHz differential clock 28 27 DIFF_3 O, DIF O.V V.100 MHz differential clock 29 28 DE_2b I, PD Output enable for DIFF_3 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out 29 DIFF_3b O, DIF O.V V.100 MHz differential clock 20 31 DIFF_4 O, DIF O.V V.100 MHz differential clock 20 32 VDD_1O PWR Output enable for DIFF_5 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out 33 GND G	18 /	DIFF Ob	O, DIF	0.7 V, 100 MHz differential clock
20 OE_1b I, PD Output enable for DIFF_1 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out 21 DIFF_1 O, DIF O.7 V, 100 MHz differential clock 22 DIFF_2 O, DIF O, DIF O TV, 100 MHz differential clock 23 GND GND GND Ground 24 VDD_IO PVR Power supply 25 VDD_IO PVR Power supply 26 DIFF_2 O, DIF O.7 V, 100 MHz differential clock 27 DIFF_3 O, DIF O.7 V, 100 MHz differential clock 28 OE_3b I, PD Output enable for DIFF_2 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out 30 DIFF_3 O, DIF O.7 V, 100 MHz differential clock 10 31 DIFF_4 O, DIF O.7 V, 100 MHz differential clock 10 32 VDD_1O PVR Output enable for DIFF_2 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out 33 GND GND GND GVD O.VM MIz differential clock 34 DIFF_4 O, DIF O.7 V, 100 MHz di			-	Output enable for DIFF_0 pair (this pin has an internal 100 k Ω pull-down), 0 = Enable outputs; 1 = Disable outputs
21 DIFF_1 O, DIF 0.7 V, 100 MHz differential clock 22 OIFF_1b O, DIF 0.7 V, 100 MHz differential clock 23 GND GND GND 24 VDD_IO PWR Power supply 25 VDD_IO PWR Output power supply 26 DIFF_2D O, DIF 0.7 V, 100 MHz differential clock 27 DIFF_2D O, DIF 0.7 V, 100 MHz differential clock 28 J, PD Output enable for DIFF_2 p air (this pin has an internal 100 KΩ pull-down), 0 = Enable outputs; 1 = Disable out 29 OE_3D I, PD Output enable for DIFF_2 p air (this pin has an internal 100 KΩ pull-down), 0 = Enable outputs; 1 = Disable out 30 DIFF_3 O, DIF 0.7 V, 100 MHz differential clock 31 GND GND Ground 34 DIFF_4 O, DIF 0.7 V, 100 MHz differential clock 35 DIFF_4b O, DIF 0.7 V, 100 MHz differential clock 36 OC_4D I, PD Output enable for DIFF_4 pair (this pin has an internal 100 KΩ pull-down), 0 = Enable outputs; 1 = Disable output		_	I, PD	
22 DIFF_1b O, DIF 0.7 V, 100 MHz differential clock 23 GND GND GND Ground 24 VDD PWR Output power supply 25 VDD_10 PWR Output power supply 26 DIFF_2 0, DIF 0.7 V, 100 MHz differential clock 27 DIFF_3b 0, DIF 0.7 V, 100 MHz differential clock 28 0E_2b I, PD Output enable for DIFF_2 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out 30 DIFF_3 0, DIF 0.7 V, 100 MHz differential clock 0 31 DIFF_3b 0, DIF 0.7 V, 100 MHz differential clock 0 32 VDD_10 PWR Output power supply 0 33 GND GND G.7 V, 100 MHz differential clock 0 34 DIFF_4b 0, DIF 0.7 V, 100 MHz differential clock 0 35 DIFF_4b 0, DIF 0.7 V, 100 MHz differential clock 0 36 OE_4b I, PD Output enable for DIFF_5 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable outputs; 1 = Disable outputs; 1 = Disable outputs		_	-	
23 GND GND Ground 24 VDD PWR Power supply 25 VDD_10 PWR Output power supply 26 DIFF_2 O, DIF O.7.V, 100 MHz differential clock 27 DIFF_2b O, DIF O.7.V, 100 MHz differential clock 28 OE_2b I, PD Output enable for DIFF_2 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out 30 DIFF_3 O, DIF O.7.V, 100 MHz differential clock 0 31 DIFF_3b O, DIF O.7.V, 100 MHz differential clock 0 33 GND GND Ground 0 34 DIFF_4b O, DIF O.7.V, 100 MHz differential clock 0 35 DIFF_4b O, DIF O.7.V, 100 MHz differential clock 0 36 OE_4b I, PD Output enable for DIFF_5 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable output		-	O, DIF	0.7 V, 100 MHz differential clock
25 VDD_IO PWR Output power supply 26 DIFF_2 0, DIF 0.7 V, 100 MHz differential clock 27 DIFF_2b 0, DIF 0.7 V, 100 MHz differential clock 28 OE_2b I, PD Output enable for DIFF_2 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out 29 OE_3b I, PD Output enable for DIFF_2 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out 30 DIFF_3 0, DIF 0.7 V, 100 MHz differential clock 31 DIFF_4 0, DIF 0.7 V, 100 MHz differential clock 32 VDD_IO PWR Output power supply 33 GND GND Ground 34 DIFF_4 0, DIF 0.7 V, 100 MHz differential clock 35 DIFF_5 D, DIF 0.7 V, 100 MHz differential clock 36 OE_4b I, PD Output enable for DIFF_5 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out 37 OE_5b I, PD Output enable for DIFF_5 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out		_	GND	Ground
26DIFF_20, DIF0.7 V, 100 MHz differential clock27DIFF_2b0, DIF0.7 V, 100 MHz differential clock280E_2b1, PDOutput enable for DIFF_2 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out290E_3b1, PDOutput enable for DIFF_3 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out30DIFF_30, DIF0.7 V, 100 MHz differential clock31DIFF_3b0, DIF0.7 V, 100 MHz differential clock32VDD_10PWROutput power supply33GNDGNDGND34DIFF_4b0, DIF0.7 V, 100 MHz differential clock35DIFF_4b0, DIF0.7 V, 100 MHz differential clock36ODutput enable for DIFF_4 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out37OE_5bI, PDOutput enable for DIFF_4 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out38DIFF_50, DIF0.7 V, 100 MHz differential clock39DIFF_5b0, DIF0.7 V, 100 MHz differential clock40VDDPWRPower supply41GNDGNDGround42DIFF_6b0, DIF0.7 V, 100 MHz differential clock43DIFF_6b0, DIF0.7 V, 100 MHz differential clock44DE_6bI, PDOutput enable for DIFF_7 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out45OE_7bI, PD	24	VDD	PWR	Power supply
26 DIFF_2 O, DIF O, 7, 100 MHz differential clock 27 DIFF_2b O, DIF O, 7, 100 MHz differential clock 28 OE_2b I, PD Output enable for DIFF_2 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out 30 DIFF_3 O, DIF O, 7, 100 MHz differential clock 31 DIFF_3 O, DIF O, 7, 100 MHz differential clock 32 VDD_IO PWR Output power supply 33 GND GND Ground 34 DIFF_4 O, DIF O, 7, 100 MHz differential clock 35 DIFF_4b O, DIF O, 7, 100 MHz differential clock 36 OE_4b I, PD Output enable for DIFF_4 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out 37 OE_5b I, PD Output enable for DIFF_4 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out 38 DIFF_5 O, DIF O, 7, 100 MHz differential clock 40 VDD PWR Power supply 41 GND Ground 4	۲ 25	VDD IO	PWR	Output power supply
27 DIFF_2b Q, DIF 0.7, V, 100 MHz differential clock 28 OE_2b I, PD Output enable for DIFF_2 pair (this pin has an internal 100 KΩ pull-down), 0 = Enable outputs; 1 = Disable out 29 OE_3b I, PD Output enable for DIFF_2 pair (this pin has an internal 100 KΩ pull-down), 0 = Enable outputs; 1 = Disable out 30 DIFF_3 O, DIF 0.7, V, 100 MHz differential clock 31 DIFF_3b O, DIF 0.7, V, 100 MHz differential clock 32 VDD_10 PWR Output power supply 33 GND GND Ground 34 DIFF_4 O, DIF 0.7, V, 100 MHz differential clock 35 DIFF_4 O, DIF 0.7, V, 100 MHz differential clock 36 OE_4b I, PD Output enable for DIFF_4 pair (this pin has an internal 100 KΩ pull-down), 0 = Enable outputs; 1 = Disable out 37 OE_5b I, PD Output enable for DIFF_5 pair (this pin has an internal 100 KΩ pull-down), 0 = Enable outputs; 1 = Disable out 38 DIFF_5 O, DIF 0.7, V, 100 MHz differential clock 41 GND GND Ground 42<			O, DIF	
29 OE_3b I, PD Output enable for DIFF_3 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out 30 DIFF_3 O, DIF O, 7 V, 100 MHz differential clock 31 DIFF_3b O, DIF O, 7 V, 100 MHz differential clock 32 VDD_IO PWR Output power supply 33 GND GND Ground 34 DIFF_4 O, DIF O, 7 V, 100 MHz differential clock 36 OE_4b I, PD Output enable for DIFF_4 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out 36 OE_5b I, PD Output enable for DIFF_5 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out 38 DIFF_5 O, DIF O.7 V, 100 MHz differential clock 39 DIFF_5b O, DIF O.7 V, 100 MHz differential clock 40 VDD PWR Power supply 41 GND GND Ground 42 DIFF_6b O, DIF O.7 V, 100 MHz differential clock 43 DIFF_7b O, DIF O.7 V, 100 MHz differential clock	27 1	DIFF_2b	O, DIF	
30 DIFF_3 O, DIF 0.7 V, 100 MHz differential clock 31 DIFF_3b O, DIF 0.7 V, 100 MHz differential clock 32 VDD_1O PWR Output power supply 33 GND GND Ground 34 DIFF_4 O, DIF 0.7 V, 100 MHz differential clock 35 DIFF_4b O, DIF 0.7 V, 100 MHz differential clock 36 OE_4b I, PD Output enable for DIFF_4 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out 37 OE_5b I, PD Output enable for DIFF_5 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out 38 DIFF_5 O, DIF 0.7 V, 100 MHz differential clock 40 VDD PWR Power supply 41 GND Ground Ground 42 DIFF_6 O, DIF 0.7 V, 100 MHz differential clock 43 DIFF_6 O, DIF 0.7 V, 100 MHz differential clock 44 OE_6b I, PD Output enable for DIFF_7 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out 45 OE_7b I, PD Output enable	28 (OE_2b	I, PD	Output enable for DIFF_2 pair (this pin has an internal 100 k Ω pull-down), 0 = Enable outputs; 1 = Disable outputs
30 DIFF_3 O, DIF 0.7 V, 100 MHz differential clock 31 DIFF_3b O, DIF 0.7 V, 100 MHz differential clock 32 VDD_1O PWR Output power supply 33 GND GND Ground 34 DIFF_4 O, DIF 0.7 V, 100 MHz differential clock 35 DIFF_4b O, DIF 0.7 V, 100 MHz differential clock 36 OE_4b I, PD Output enable for DIFF_4 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out 37 OE_5b I, PD Output enable for DIFF_5 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out 38 DIFF_5 O, DIF 0.7 V, 100 MHz differential clock 40 VDD PWR Power supply 41 GND Ground Ground 42 DIFF_6 O, DIF 0.7 V, 100 MHz differential clock 43 DIFF_6 O, DIF 0.7 V, 100 MHz differential clock 44 OE_6b I, PD Output enable for DIFF_7 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out 45 OE_7b I, PD Output enable	29 (OE_3b	I, PD	Output enable for DIFF_3 pair (this pin has an internal 100 k Ω pull-down), 0 = Enable outputs; 1 = Disable outputs
32 VDD_IO PWR Output power supply 33 GND GND Ground 34 DIFF_4 O, DIF O. 7. V, 100 MHz differential clock 35 DIFF_4b O, DIF O. 7. V, 100 MHz differential clock 36 OE_4b I, PD Output enable for DIFF_4 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out 37 OE_5b I, PD Output enable for DIFF_5 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out 38 DIFF_5 O, DIF O.7. V, 100 MHz differential clock 40 VDD PWR Power supply 41 GND GND Ground 42 DIFF_6 O, DIF O.7. V, 100 MHz differential clock 43 DIFF_6 O, DIF O.7. V, 100 MHz differential clock 44 OE_6b I, PD Output enable for DIFF_6 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out 45 DIFF_7 O, DIF O.7. V, 100 MHz differential clock 44 OE_6b I, PD Output enable for DIFF_7 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out	30 1	DIFF_3	O, DIF	
32 VDD_IO PWR Output power supply 33 GND GND Ground 34 DIFF_4 O, DIF O. 7. V, 100 MHz differential clock 35 DIFF_4b O, DIF O. 7. V, 100 MHz differential clock 36 OE_4b I, PD Output enable for DIFF_4 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out 37 OE_5b I, PD Output enable for DIFF_5 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out 38 DIFF_5b O, DIF O.7. V, 100 MHz differential clock 39 DIFF_6b O, DIF O.7. V, 100 MHz differential clock 40 VDD PWR Power supply 41 GND GND Ground 42 DIFF_6 O, DIF O.7. V, 100 MHz differential clock 43 DIFF_6b O, DIF O.7. V, 100 MHz differential clock 44 OE_6b I, PD Output enable for DIFF_6 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out 45 DIFF_7 O, DIF O.7. V, 100 MHz differential clock 47 DIFF_7b O, DIF O.7	31 /	DIFF_3b	O, DIF	
33 GND GND Ground 34 DIFF_4 O, DIF 0.7 V, 100 MHz differential clock 35 DIFF_4b O, DIF 0.7 V, 100 MHz differential clock 36 OE_4b I, PD Output enable for DIFF_4 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out 37 OE_5b I, PD Output enable for DIFF_5 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out 38 DIFF_5b O, DIF 0.7 V, 100 MHz differential clock 39 DIFF_5b O, DIF 0.7 V, 100 MHz differential clock 40 VDD PWR Power supply 41 GND Ground 42 DIFF_6b O, DIF 0.7 V, 100 MHz differential clock 43 DIFF_6b O, DIF 0.7 V, 100 MHz differential clock 44 OE_6b I, PD Output enable for DIFF_7 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out 45 OE_7b I, PD Output enable for DIFF_7 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out 46 DIFF_7 O, DIF 0.7 V, 100 MHz differential clock Image: Stand Stand S			PWR	Output power supply
35DIFF_4bO, DIF0.7 V, 100 MHz differential clock36OE_4bI, PDOutput enable for DIFF_4 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out37OE_5bI, PDOutput enable for DIFF_5 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out38DIFF_5O, DIF0.7 V, 100 MHz differential clock39DIFF_5bO, DIF0.7 V, 100 MHz differential clock40VDDPWRPower supply41GNDGNDGround42DIFF_6O, DIF0.7 V, 100 MHz differential clock43DIFF_6bO, DIF0.7 V, 100 MHz differential clock44OE_6bI, PDOutput enable for DIFF_6 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out45OE_7bI, PDOutput enable for DIFF_7 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out46DIFF_7O, DIF0.7 V, 100 MHz differential clock47DIFF_7bO, DIF0.7 V, 100 MHz differential clock48GNDGNDGround49VDD_IOPWROutput power supply50DIFF_80, DIF0.7 V, 100 MHz differential clock51DIFF_8b0, DIF0.7 V, 100 MHz differential clock52QE_8bI, PDOutput power supply50DIFF_80, DIF0.7 V, 100 MHz differential clock51DIFF_8b0, DIF0.7 V, 100 MHz differential clock52 <t< td=""><td>33 (</td><td>GND</td><td>GND</td><td></td></t<>	33 (GND	GND	
35DIFF_4bO, DIF0.7 V, 100 MHz differential clock36OE_4bI, PDOutput enable for DIFF_4 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out37OE_5bI, PDOutput enable for DIFF_5 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out38DIFF_5O, DIF0.7 V, 100 MHz differential clock39DIFF_5bO, DIF0.7 V, 100 MHz differential clock40VDDPWRPower supply41GNDGNDGround42DIFF_6O, DIF0.7 V, 100 MHz differential clock43DIFF_6bO, DIF0.7 V, 100 MHz differential clock44OE_6bI, PDOutput enable for DIFF_6 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out45OE_7bI, PDOutput enable for DIFF_7 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out46DIFF_7O, DIF0.7 V, 100 MHz differential clock47DIFF_7bO, DIF0.7 V, 100 MHz differential clock48GNDGNDGround49VDD_IOPWROutput power supply50DIFF_80, DIF0.7 V, 100 MHz differential clock51DIFF_8b0, DIF0.7 V, 100 MHz differential clock52QE_8bI, PDOutput power supply50DIFF_80, DIF0.7 V, 100 MHz differential clock51DIFF_8b0, DIF0.7 V, 100 MHz differential clock52 <t< td=""><td>34 1</td><td>DIFF_4</td><td>O, DIF</td><td>0.7 V, 100 MHz differential clock</td></t<>	34 1	DIFF_4	O, DIF	0.7 V, 100 MHz differential clock
36OE_4bI, PDOutput enable for DIFF_4 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out37OE_5bI, PDOutput enable for DIFF_5 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out38DIFF_5O, DIF0.7 V, 100 MHz differential clock39DIFF_5bO, DIF0.7 V, 100 MHz differential clock40VDDPWRPower supply41GNDGNDGround42DIFF_6O, DIF0.7 V, 100 MHz differential clock43DIFF_6bO, DIF0.7 V, 100 MHz differential clock44OE_6bI, PDOutput enable for DIFF_5 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out45OE_7bI, PDOutput enable for DIFF_7 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out46DIFF_7O, DIF0.7 V, 100 MHz differential clock47DIFF_7bO, DIF0.7 V, 100 MHz differential clock48GNDGNDGround49VDD_10PWROutput power supply50DIFF_8O, DIF0.7 V, 100 MHz differential clock51DIFF_8bI, PDOutput enable for DIFF_9 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out53OE_9bI, PDOutput enable for DIFF_9 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out54DIFF_9O, DIF0.7 V, 100 MHz differential clock55DIFF_9O,			O, DIF	
38 DIFF_5 O, DIF 0.7 V, 100 MHz differential clock 39 DIFF_5b O, DIF 0.7 V, 100 MHz differential clock 40 VDD PWR Power supply 41 GND GND Ground 42 DIFF_6 O, DIF 0.7 V, 100 MHz differential clock 43 DIFF_6b O, DIF 0.7 V, 100 MHz differential clock 44 OE_6b I, PD Output enable for DIFF_6 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out 45 OE_7b I, PD Output enable for DIFF_7 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out 46 DIFF_7 O, DIF 0.7 V, 100 MHz differential clock 47 DIFF_7b O, DIF 0.7 V, 100 MHz differential clock 48 GND GND Ground 49 VD_IO PWR Output power supply 50 DIFF_8 O, DIF 0.7 V, 100 MHz differential clock 51 DIFF_8 O, DIF 0.7 V, 100 MHz differential clock 52 OE_8b I, PD Output power supply 53 OE_9b <td< td=""><td></td><td></td><td>I, PD</td><td>Output enable for DIFF_4 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable outputs</td></td<>			I, PD	Output enable for DIFF_4 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable outputs
38 DIFF_5 O, DIF 0.7 V, 100 MHz differential clock 39 DIFF_5b O, DIF 0.7 V, 100 MHz differential clock 40 VDD PWR Power supply 41 GND GND Ground 42 DIFF_6 O, DIF 0.7 V, 100 MHz differential clock 43 DIFF_6b O, DIF 0.7 V, 100 MHz differential clock 44 OE_6b I, PD Output enable for DIFF_6 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out 45 OE_7b I, PD Output enable for DIFF_7 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out 46 DIFF_7 O, DIF 0.7 V, 100 MHz differential clock 47 DIFF_7b O, DIF 0.7 V, 100 MHz differential clock 48 GND GND Ground 49 VD_IO PWR Output power supply 50 DIFF_8 O, DIF 0.7 V, 100 MHz differential clock 51 DIFF_8 O, DIF 0.7 V, 100 MHz differential clock 52 OE_8b I, PD Output power supply 53 OE_9b <td< td=""><td>37 (</td><td>OE_5b</td><td>I, PD</td><td>Output enable for DIFF_5 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable outputs</td></td<>	37 (OE_5b	I, PD	Output enable for DIFF_5 pair (this pin has an internal 100 k Ω pull-down), 0 = Enable outputs; 1 = Disable outputs
39 DIFF_5b O, DIF 0.7 V, 100 MHz differential clock 40 VDD PWR Power supply 41 GND GND Ground 42 DIFF_6 O, DIF 0.7 V, 100 MHz differential clock 43 DIFF_6b O, DIF 0.7 V, 100 MHz differential clock 44 OE_6b I, PD Output enable for DIFF_6 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out 45 OE_7b I, PD Output enable for DIFF_7 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out 46 DIFF_7 O, DIF 0.7 V, 100 MHz differential clock 47 DIFF_7b O, DIF 0.7 V, 100 MHz differential clock 48 GND GND Ground 49 VDD_IO PWR Output power supply 50 DIFF_8b O, DIF 0.7 V, 100 MHz differential clock 51 DIFF_8b O, DIF 0.7 V, 100 MHz differential clock 52 OE_8b I, PD Output enable for DIFF_8 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out 53 OE_9b I, PD Output enable	38 1	DIFF_5	O, DIF	
40VDDPWRPower supply41GNDGNDGround42DIFF_6O, DIF0.7 V, 100 MHz differential clock43DIFF_6bO, DIF0.7 V, 100 MHz differential clock44OE_6bI, PDOutput enable for DIFF_6 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out45OE_7bI, PDOutput enable for DIFF_7 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out46DIFF_7O, DIF0.7 V, 100 MHz differential clock47DIFF_7bO, DIF0.7 V, 100 MHz differential clock48GNDGNDGround49VDD_IOPWROutput power supply50DIFF_8O, DIF0.7 V, 100 MHz differential clock51DIFF_8bO, DIF0.7 V, 100 MHz differential clock52OE_8bI, PDOutput enable for DIFF_8 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out53OE_9bI, PDOutput enable for DIFF_9 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out54DIFF_9O, DIF0.7 V, 100 MHz differential clock55DIFF_9bO, DIF0.7 V, 100 MHz differential clock56VDD_1OPWROutput enable for DIFF_9 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out54DIFF_9bO, DIF0.7 V, 100 MHz differential clock55DIFF_9bO, DIF0.7 V, 100 MHz differential clock56	39 1	DIFF_5b	O, DIF	
42DIFF_6O, DIF0.7 V, 100 MHz differential clock43DIFF_6bO, DIF0.7 V, 100 MHz differential clock44OE_6bI, PDOutput enable for DIFF_6 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out45OE_7bI, PDOutput enable for DIFF_7 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out46DIFF_7O, DIF0.7 V, 100 MHz differential clock47DIFF_7bO, DIF0.7 V, 100 MHz differential clock48GNDGNDGround49VDD_IOPWROutput power supply50DIFF_8O, DIF0.7 V, 100 MHz differential clock51DIFF_8bO, DIF0.7 V, 100 MHz differential clock52OE_8bI, PDOutput enable for DIFF_8 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out53OE_9bI, PDOutput enable for DIFF_9 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out54DIFF_9O, DIF0.7 V, 100 MHz differential clock55DIFF_9bO, DIF0.7 V, 100 MHz differential clock56VDD_10PWROutput enable for DIFF_9 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out57VDDPWROutput power supply57VDDPWROutput power supply58GNDGNDGround	40 \	VDD	PWR	
43DIFF_6bO, DIF0.7 V, 100 MHz differential clock44OE_6bI, PDOutput enable for DIFF_6 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out45OE_7bI, PDOutput enable for DIFF_7 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out46DIFF_7O, DIF0.7 V, 100 MHz differential clock47DIFF_7bO, DIF0.7 V, 100 MHz differential clock48GNDGNDGround49VDD_IOPWROutput power supply50DIFF_8O, DIF0.7 V, 100 MHz differential clock51DIFF_8bO, DIF0.7 V, 100 MHz differential clock52OE_8bI, PDOutput enable for DIFF_8 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out53OE_9bI, PDOutput enable for DIFF_8 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out54DIFF_9O, DIF0.7 V, 100 MHz differential clock55DIFF_9bI, PDOutput enable for DIFF_9 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out54DIFF_9bO, DIF0.7 V, 100 MHz differential clock55DIFF_9bO, DIF0.7 V, 100 MHz differential clock56VDD_10PWROutput power supply57VDDPWRPower supply58GNDGNDGround	41 (GND	GND	Ground
43DIFF_6bO, DIF0.7 V, 100 MHz differential clock44OE_6bI, PDOutput enable for DIFF_6 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out45OE_7bI, PDOutput enable for DIFF_7 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out46DIFF_7O, DIF0.7 V, 100 MHz differential clock47DIFF_7bO, DIF0.7 V, 100 MHz differential clock48GNDGNDGround49VDD_IOPWROutput power supply50DIFF_8O, DIF0.7 V, 100 MHz differential clock51DIFF_8bO, DIF0.7 V, 100 MHz differential clock52OE_8bI, PDOutput enable for DIFF_8 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out53OE_9bI, PDOutput enable for DIFF_8 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out54DIFF_9O, DIF0.7 V, 100 MHz differential clock55DIFF_9bI, PDOutput enable for DIFF_9 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out54DIFF_9bO, DIF0.7 V, 100 MHz differential clock55DIFF_9bO, DIF0.7 V, 100 MHz differential clock56VDD_10PWROutput power supply57VDDPWRPower supply58GNDGNDGround	42 ſ	DIFF_6	O, DIF	0.7 V, 100 MHz differential clock
45OE_7bI, PDOutput enable for DIFF_7 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out46DIFF_7O, DIF0.7 V, 100 MHz differential clock47DIFF_7bO, DIF0.7 V, 100 MHz differential clock48GNDGNDGround49VDD_IOPWROutput power supply50DIFF_8O, DIF0.7 V, 100 MHz differential clock51DIFF_8bO, DIF0.7 V, 100 MHz differential clock52OE_8bI, PDOutput enable for DIFF_8 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out53OE_9bI, PDOutput enable for DIFF_9 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out54DIFF_9O, DIF0.7 V, 100 MHz differential clock55DIFF_9bO, DIF0.7 V, 100 MHz differential clock56VDD_1OPWROutput enable for DIFF_9 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out56VDD_1OPWROutput power supply57VDDPWROutput power supply58GNDGNDGround			O, DIF	0.7 V, 100 MHz differential clock
46DIFF_7O, DIF0.7 V, 100 MHz differential clock47DIFF_7bO, DIF0.7 V, 100 MHz differential clock48GNDGNDGround49VDD_IOPWROutput power supply50DIFF_8O, DIF0.7 V, 100 MHz differential clock51DIFF_8bO, DIF0.7 V, 100 MHz differential clock52OE_8bI, PDOutput enable for DIFF_8 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out53OE_9bI, PDOutput enable for DIFF_9 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out54DIFF_9O, DIF0.7 V, 100 MHz differential clock55DIFF_9bO, DIF0.7 V, 100 MHz differential clock56VDD_IOPWROutput enable for DIFF_9 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out57VDDPWROutput power supply57VDDPWROutput power supply58GNDGNDGround	44 (OE_6b	I, PD	Output enable for DIFF_6 pair (this pin has an internal 100 k Ω pull-down), 0 = Enable outputs; 1 = Disable outputs
47DIFF_7bO, DIF0.7 V, 100 MHz differential clock48GNDGNDGround49VDD_IOPWROutput power supply50DIFF_8O, DIF0.7 V, 100 MHz differential clock51DIFF_8bO, DIF0.7 V, 100 MHz differential clock52OE_8bI, PDOutput enable for DIFF_8 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out53OE_9bI, PDOutput enable for DIFF_9 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out54DIFF_9O, DIF0.7 V, 100 MHz differential clock55DIFF_9bO, DIF0.7 V, 100 MHz differential clock56VDD_IOPWROutput power supply57VDDPWRPower supply58GNDGNDGround	45 (OE_7b	I, PD	Output enable for DIFF_7 pair (this pin has an internal 100 k Ω pull-down), 0 = Enable outputs; 1 = Disable outputs
48GNDGNDGround49VDD_IOPWROutput power supply50DIFF_8O, DIF0.7 V, 100 MHz differential clock51DIFF_8bO, DIF0.7 V, 100 MHz differential clock52OE_8bI, PDOutput enable for DIFF_8 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out53OE_9bI, PDOutput enable for DIFF_9 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out54DIFF_9O, DIF0.7 V, 100 MHz differential clock55DIFF_9bO, DIF0.7 V, 100 MHz differential clock56VDD_IOPWROutput power supply57VDDPWRPower supply58GNDGNDGround	46 I	DIFF_7	O, DIF	0.7 V, 100 MHz differential clock
49VDD_IOPWROutput power supply50DIFF_8O, DIF0.7 V, 100 MHz differential clock51DIFF_8bO, DIF0.7 V, 100 MHz differential clock52OE_8bI, PDOutput enable for DIFF_8 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out53OE_9bI, PDOutput enable for DIFF_9 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out54DIFF_9O, DIF0.7 V, 100 MHz differential clock55DIFF_9bO, DIF0.7 V, 100 MHz differential clock56VDD_IOPWROutput power supply57VDDPWRPower supply58GNDGNDGround	47 I	DIFF_7b	O, DIF	0.7 V, 100 MHz differential clock
50DIFF_8O, DIF0.7 V, 100 MHz differential clock51DIFF_8bO, DIF0.7 V, 100 MHz differential clock52OE_8bI, PDOutput enable for DIFF_8 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out53OE_9bI, PDOutput enable for DIFF_9 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out54DIFF_9O, DIF0.7 V, 100 MHz differential clock55DIFF_9bO, DIF0.7 V, 100 MHz differential clock56VDD_IOPWROutput power supply57VDDPWRPower supply58GNDGNDGround			GND	Ground
51DIFF_8bO, DIF0.7 V, 100 MHz differential clock52OE_8bI, PDOutput enable for DIFF_8 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out53OE_9bI, PDOutput enable for DIFF_9 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out54DIFF_9O, DIF0.7 V, 100 MHz differential clock55DIFF_9bO, DIF0.7 V, 100 MHz differential clock56VDD_IOPWROutput power supply57VDDPWRPower supply58GNDGNDGround	49 ^۱	VDD_IO	PWR	Output power supply
52OE_8bI, PDOutput enable for DIFF_8 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out53OE_9bI, PDOutput enable for DIFF_9 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out54DIFF_9O, DIF0.7 V, 100 MHz differential clock55DIFF_9bO, DIF0.7 V, 100 MHz differential clock56VDD_IOPWROutput power supply57VDDPWRPower supply58GNDGNDGround	50 ſ	DIFF_8	O, DIF	0.7 V, 100 MHz differential clock
52OE_8bI, PDOutput enable for DIFF_8 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out53OE_9bI, PDOutput enable for DIFF_9 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable out54DIFF_9O, DIF0.7 V, 100 MHz differential clock55DIFF_9bO, DIF0.7 V, 100 MHz differential clock56VDD_IOPWROutput power supply57VDDPWRPower supply58GNDGNDGround	51 I	DIFF_8b	O, DIF	0.7 V, 100 MHz differential clock
54DIFF_9O, DIF0.7 V, 100 MHz differential clock55DIFF_9bO, DIF0.7 V, 100 MHz differential clock56VDD_IOPWROutput power supply57VDDPWRPower supply58GNDGNDGround			I, PD	Output enable for DIFF_8 pair (this pin has an internal 100 k Ω pull-down), 0 = Enable outputs; 1 = Disable outputs
55 DIFF_9b O, DIF 0.7 V, 100 MHz differential clock 56 VDD_IO PWR Output power supply 57 VDD PWR Power supply 58 GND GND Ground	53 (OE_9b	I, PD	Output enable for DIFF_9 pair (this pin has an internal 100 k Ω pull-down), 0 = Enable outputs; 1 = Disable outputs
56 VDD_IO PWR Output power supply 57 VDD PWR Power supply 58 GND GND Ground	54 ſ	DIFF_9	O, DIF	0.7 V, 100 MHz differential clock
57 VDD PWR Power supply 58 GND GND Ground	55 ſ	DIFF_9b	O, DIF	0.7 V, 100 MHz differential clock
58 GND GROUND Ground	56 V	VDD_IO	PWR	Output power supply
	57 ^۱	VDD	PWR	Power supply
59 DIFF_10 O, DIF 0.7 V, 100 MHz differential clock	58 (GND	GND	Ground
	59 ſ	DIFF_10	O, DIF	0.7 V, 100 MHz differential clock
60 DIFF_10b O, DIF 0.7 V, 100 MHz differential clock	60 l	DIFF_10b	O, DIF	0.7 V, 100 MHz differential clock
61 OE_10b I, PD Output enable for DIFF_10 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable ou	61 (OE_10b	I, PD	Output enable for DIFF_10 pair (this pin has an internal 100 k Ω pull-down), 0 = Enable outputs; 1 = Disable outputs
62 OE_11b I, PD Output enable for DIFF_11 pair (this pin has an internal 100 kΩ pull-down), 0 = Enable outputs; 1 = Disable ou	62 (OE_11b	I, PD	Output enable for DIFF_11 pair (this pin has an internal 100 k Ω pull-down), 0 = Enable outputs; 1 = Disable outputs
63 DIFF_11 O, DIF 0.7 V, 100 MHz differential clock	63 I	DIFF_11	O, DIF	0.7 V, 100 MHz differential clock
64 DIFF_11b O, DIF 0.7 V, 100 MHz differential clock	64 l	DIFF_11b	O, DIF	0.7 V, 100 MHz differential clock
GND PAD GND The ground pad provides an electrical and thermal connection to ground and must be connected for proper op as many vias as practical, and keep the via length to an internal ground plane as short as possible.	(GND PAD	GND	The ground pad provides an electrical and thermal connection to ground and must be connected for proper operation. Use as many vias as practical, and keep the via length to an internal ground plane as short as possible.

Table 1. Si52212 Signal Descriptions(Continued)

3.2. Si52208 Pin Descriptions



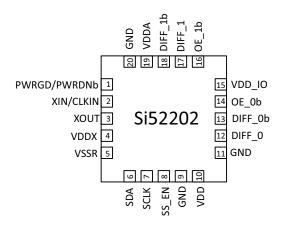

Figure 6. Si52208 48-pin QFN Pinout


Pin	Name	Туре	Description
1	VDDA	PWR	Analog Power Supply
2	GNDA	PWR	Analog Ground
3	SS_EN	I	Spread spectrum enable pin. 0 = -0.25% spread, mid= Off, 1 = -0.5% spread (this pin has an internal 100 k Ω pull-up)
4	PWRGD/ PWRDNb	I, PU	Active low input pin asserts power down (PDb) and disables all outputs (this pin has an internal 100 k Ω pull-up). Refer to settings of Byte 2, Bit2 and Bit3 for REF. Settings for Bit3 (REF_OE) will take precedence for REF.
5	XIN/CLKIN	I	25.00 MHz crystal input or 25 MHz Clock Input
6	XOUT	0	25.00 MHz crystal output, float XOUT if using only CLKIN (clock input)
7	VDDX	PWR	Power supply for crystal
8	VDDR	PWR	Power supply for REF output
9	REF /SA	0/1	REF = 25 MHz LVCMOS output. SA = Address select for I2C. When part is powered up, SA will be latched to select the I ² C address. Refer to Table 12, "SA State on First Application of PWRDNb," on page 29. Refer also to "Feature List" on page 2 for termination (this pin has an internal 60 k Ω pull-up).
10	VSSR	GND	Power supply for crystal
11	SDA	I/O	I ² C compatible SDATA
12	SCLK	I	I ² C compatible SCLOCK
13	FS	I	Frequency select pin, 0 = 100 MHz, mid = 200 MHz, 1 = 133 MHz (this pin has an internal 100 k Ω pull-down)
14	NC	NC	No connection
15	DIFF_0	O, DIF	0.7 V, 100 MHz differential clock
16	DIFF_0b	O, DIF	0.7 V, 100 MHz differential clock
17	OE_0b	I, PD	Output enable for DIFF_0 pair (this pin has an internal 100 k Ω pull-down), 0 = Enable outputs; 1 = Disable outputs
18	OE_1b	I, PD	Output enable for DIFF_1 pair (this pin has an internal 100 k Ω pull-down), 0 = Enable outputs; 1 = Disable outputs
19	DIFF_1	O, DIF	0.7 V, 100 MHz differential clock
20	DIFF_1b	O, DIF	0.7 V, 100 MHz differential clock
21	VDD	PWR	Power supply
22	VDD_IO	PWR	Output power supply

Pin	Name	Туре	Description
23	DIFF_2	O, DIF	0.7 V, 100 MHz differential clock
24	DIFF_2b	O, DIF	0.7 V, 100 MHz differential clock
25	OE_2b	I, PD	Output enable for DIFF_2 pair (this pin has an internal 100 k Ω pull-down), 0 = Enable outputs; 1 = Disable outputs
26	VDD_IO	PWR	Output power supply
27	NC	NC	No connection
28	OE_3b	I, PD	Output enable for DIFF_3 pair (this pin has an internal 100 k Ω pull-down), 0 = Enable outputs; 1 = Disable outputs
29	DIFF_3	O, DIF	0.7 V, 100 MHz differential clock
30	DIFF_3b	O, DIF	0.7 V, 100 MHz differential clock
31	VDD	PWR	Power supply
32	DIFF_4	O, DIF	0.7 V, 100 MHz differential clock
33	DIFF_4b	O, DIF	0.7 V, 100 MHz differential clock
34	OE_4b	I, PD	Output enable for DIFF_4 pair (this pin has an internal 100 k Ω pull-down), 0 = Enable outputs; 1 = Disable outputs
35	NC	NC	No connection
36	VDD_IO	PWR	Output power supply
37	DIFF_5	O, DIF	0.7 V, 100 MHz differential clock
38	DIFF_5b	O, DIF	0.7 V, 100 MHz differential clock
39	OE_5b	I, PD	Output enable for DIFF_5 pair (this pin has an internal 100 k Ω pull-down), 0 = Enable outputs; 1 = Disable outputs
40	NC	NC	No connection
41	VDD_IO	PWR	Output power supply
42	VDD	PWR	Power supply
43	DIFF_6	O, DIF	0.7 V, 100 MHz differential clock
44	DIFF_6b	O, DIF	0.7 V, 100 MHz differential clock
45	OE_6b	I, PD	Output enable for DIFF_6 pair (this pin has an internal 100 k Ω pull-down), 0 = Enable outputs; 1 = Disable outputs
46	OE_7b	I, PD	Output enable for DIFF_7 pair (This pin has an internal 100 k Ω pull-down), 0 = Enable outputs; 1 = Disable outputs
47	DIFF_7	O, DIF	0.7 V, 100 MHz differential clock
48	DIFF_7b	O, DIF	0.7 V, 100 MHz differential clock
	GND PAD	GND	The ground pad provides an electrical and thermal connection to ground and must be connected for proper operation. Use as many vias as practical, and keep the via length to an internal ground plane as short as possible.

Table 2. Si52208 Signal Descriptions (Continued)

3.3. Si52204 Pin Descriptions


Table	3.	Si52204	Signal	Descri	ptions
-------	----	---------	--------	--------	--------

Pin #	Name	Туре	Description
1	SS_EN	I	Spread spectrum enable pin, 0 = -0.25% spread; mid = Off; 1 = -0.5% spread (this pin has an internal 100 k Ω pull-up)
2	PWRGD/ PWRDNb	I, PU	Active low input pin asserts power down (PDb) and disables all outputs (this pin has an internal 100 k Ω pull-up). Refer to settings of Byte 2, Bit2 and Bit3 for REF. Settings for Bit3 (REF_OE) will take precedence for REF.
3	XIN/CLKIN	I	25.00 MHz crystal input or 25 MHz Clock Input
4	XOUT	0	25.00 MHz crystal output. Float XOUT if using only CLKIN (clock input)
5	VDDX	PWR	Power supply for crystal
6	VDDR	PWR	Power supply for REF output
7	REF /SA	0/1	REF = 25 MHz LVCMOS output. SA = Address select for I2C. When part is powered up, SA will be latched to select the I ² C address. Refer to Table 12, "SA State on First Application of PWRDNb," on page 29. Refer also to "Feature List" on page 2 for termination (this pin has an internal 60 k Ω pull-up).
8	VSSR	GND	Ground
9	SDA	I/O	I ² C compatible SDATA
10	SCLK	I	I ² C compatible SCLOCK
11	FS	I	Frequency select pin, 0 = 100 MHz; mid = 200 MHz; 1 = 133 MHz (this pin has an internal 100 k Ω pull-down)
12	DIFF_0	O, DIF	0.7 V, 100 MHz differential clock
13	DIFF_0b	O, DIF	0.7 V, 100 MHz differential clock
14	OE_0b	I, PD	Output enable for DIFF_0 pair (this pin has an internal 100 k Ω pull-down), 0 = Enable outputs; 1 = Disable outputs
15	VDD_IO	PWR	Output power supply
16	OE_1b	I, PD	Output enable for DIFF_1 pair (this pin has an internal 100 k Ω pull-down), 0 = Enable outputs; 1 = Disable outputs
17	DIFF_1	O, DIF	0.7 V, 100 MHz differential clock
18	DIFF_1b	O, DIF	0.7 V, 100 MHz differential clock
19	VDD	PWR	Power supply
20	NC	NC	No connection
21	DIFF_2	O, DIF	0.7 V, 100 MHz differential clock
22	DIFF_2b	O, DIF	0.7 V, 100 MHz differential clock
23	OE_2b	I, PD	Output enable for DIFF_2 pair (this pin has an internal 100 k Ω pull-down), 0 = Enable outputs; 1 = Disable outputs
24	VDD_IO	PWR	Output power supply
25	DIFF_3	O, DIF	0.7 V, 100 MHz differential clock
26	DIFF_3b	O, DIF	0.7 V, 100 MHz differential clock
27	OE_3b	I, PD	Output enable for DIFF_3 pair (this pin has an internal 100 k Ω pull-down), 0 = Enable outputs; 1 = Disable outputs

Pin #	Name	Туре	Description
28	NC	NC	No connection
29	VDD	PWR	Power supply
30	NC	NC	No connect
31	VDDA	PWR	Analog power supply
32	GNDA	PWR	Analog ground
	GND PAD	GND	The ground pad provides an electrical and thermal connection to ground and must be connected for proper operation. Use as many vias as practical, and keep the via length to an internal ground plane as short as possible.

Table 3. Si52204 Signal Descriptions (Continued)

3.4. Si52202 Pin Descriptions

Figure 8. Si52202 20-pin QFN Pinout

Table 4. Si52202 Signal Descriptions¹

Pin #	Name	Туре	Description
1	PWRGD/ PWRDNb	I, PU	Active low input pin asserts power down (PDb) and disables all outputs (this pin has an internal pull-up)
2	XIN/CLKIN	I	25.00 MHz crystal input or 25 MHz Clock Input
3	XOUT	0	25.00 MHz crystal output. Float XOUT if using only CLKIN (clock input)
4	VDDX	PWR	Power supply for crystal
5	VSSR	GND	Ground
6	SDA	I/O	I ² C compatible SDATA
7	SCLK	I	I ² C compatible SCLOCK
8	SS_EN	I	Spread spectrum enable pin, 0 = -0.25% spread; mid = Off; 1 = -0.5% spread (this pin has an internal 100 k Ω pull-up)
9	GND	GND	Ground
10	VDD	PWR	Power supply
11	GND	GND	Ground
12	DIFF_0	O, DIF	0.7 V, 100 MHz differential clock
13	DIFF_0b	O, DIF	0.7 V, 100 MHz differential clock
14	OE_0b	I, PD	Output enable for DIFF_0 pair (this pin has an internal 100 k Ω pull-down), 0 = Enable outputs; 1 = Disable outputs
15	VDD_IO	PWR	Output power supply
16	OE_1b	I, PD	Output enable for DIFF_1 pair (this pin has an internal 100 k Ω pull-down), 0 = Enable outputs; 1 = Disable outputs
17	DIFF_1	O, DIF	0.7 V, 100 MHz differential clock
18	DIFF_1b	O, DIF	0.7 V, 100 MHz differential clock
19	VDDA	PWR	Analog power supply
20	GND	GND	Ground
	GND PAD	GND	The ground pad provides an electrical and thermal connection to ground and must be connected for proper operation. Use as many vias as practical, and keep the via length to an internal ground plane as short as possible.

1. Contact factory for 133/200M output frequencies.

4. Electrical Specifications

Table 5. DC Electrical Specifications

(VDD = VDDR = VDDX = VDDA = 1.5 V ±5%)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
1.5 V Operating voltage	VDD	1.5 V ±5%	1.425	1.5	1.575	V
Output supply voltage	VDD_IO	Supply voltage for differential Low Power outputs	0.9975	1.05-1.5	1.575	V
1.5 V Input high voltage	V _{IH}	Control input pins, except SDATA, SCLK	0.75 VDD	_	VDD + 0.3	V
1.5 V Input mid voltage	V _{IM}	Tri-level control input pins, except SDATA, SCLK	0.4 VDD	0.5 VDD	0.6 VDD	V
1.5 V Input low voltage	V _{IL}	Control input pins, except SDATA,SCLK	-0.3	_	0.25 VDD	V
Input high voltage	V _{IHI2C}	SDATA, SCLK	1.14	_	3.3	V
Input low voltage	V _{ILI2C}	SDATA, SCLK	—	_	0.6	V
SDATA, SCLK sink current	I _{PULLUP}	At V _{OL}	4	_		mA
	I _{IN}	Single-ended inputs, VIN = GND, VIN = VDD	-5	_	5	uA
Input current	I _{INP}	Single-ended inputs, VIN = 0 V, inputs with internal pull-up resistors V_{IN} = VDD, inputs with internal pull-down resistors	-200	_	200	uA
Input pin capacitance	C _{IN}		1.5	_	5	pF
Output pin capacitance	C _{OUT}		—	_	6	pF
Pin inductance	LIN		—	_	7	nH
Si52212 Current Consumption (V	DD = VDDR =	VDDX = VDDA = 1.5 V ±5%)				
	I _{DD_PD_total}	All outputs off	—	1.3	1.8	mA
Power down current PWRGD/	I _{DD_PD}	VDD, except VDDA and VDD_IO, all outputs off	_	0.4	1.0	mA
PWRDNb = "0" Byte 2, bit 2 = 0	I _{DD_APD}	VDDA, all outputs off	-	0.6	0.75	mA
	I _{DD_IOPD}	VDD_IO, all outputs off	-	0.3	0.5	mA
	I _{DD_WOL}	VDD, except VDDA and VDD_IO, all differential outputs off, REF running	_	2.5	3.2	mA
Wake-on LAN current PWRGD_PWRDNb = "0" Byte 2, bit 2 = 1	I _{DD_AWOL}	VDDA, all differential outputs off, REF running	_	0.6	0.75	mA
	I _{DD_IOWOL}	VDD_IO, all differential outputs off, REF running	_	0.3	0.5	mA
	I _{DD_1.5V_Total}	All outputs enabled. Differential clocks with 5" traces and 2 pF load.	_	66	77	mA
Dynamic supply current	I _{DD_OP}	VDD, except VDDA and VDD_IO, all differential out- puts active at 100 MHz	-	13	14.5	mA
	I _{DD_AOP}	VDDA, all differential outputs active at 100 MHz	—	7	8.5	mA
	I _{DD_IOOP}	VDD_IO, all differential outputs active at 100 MHz	—	46	55.5	mA

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Si52208 Current Consumption (V	DD = VDDR =	VDDX = VDDA = 1.5 V ±5%)				
	I _{DD_PD_total}	All outputs off	_	1.3	1.8	mA
Power down current PWRGD/	I _{DD_PD}	VDD, except VDDA and VDD_IO, all outputs off	—	0.4	1.0	mA
PWRDNb = "0" Byte 2, bit 2 = 0	I _{DD_APD}	VDDA, all outputs off	_	0.6	0.75	mA
	I _{DD_IOPD}	VDD_IO, all outputs off	_	0.3	0.5	mA
Wake-on LAN current	I _{DD_WOL}	VDD, except VDDA and VDD_IO, all differential out- puts off, REF running	_	2.5	3.2	mA
PWRGD_PWRDNb = "0" Byte 2, bit 2 = 1	I _{DD_AWOL}	VDDA, all differential outputs off, REF running	_	0.6	0.75	mA
	I _{DD_IOWOL}	VDD_IO, all differential outputs off, REF running	_	0.3	0.5	mA
	I _{DD_1.5V_Total}	All outputs enabled. Differential clocks with 5" traces and 2 pF load.	_	48	58.5	mA
Dynamic supply current	I _{DD_OP}	VDD, except VDDA and VDD_IO, all differential out- puts active at 100 MHz	_	11	12.5	mA
	I _{DD_AOP}	VDDA, all differential outputs active at 100 MHz	_	7	8.5	mA
	I _{DD_IOOP}	VDD_IO, all differential outputs active at 100 MHz	_	30	37.5	mA
Si52204 Current Consumption (V	DD = VDDR =	VDDX = VDDA = 1.5 V ±5%)				
Power down current PWRGD/	I _{DD_PD_total}	All outputs off	_	1.3	1.8	mA
	I _{DD_PD}	VDD, except VDDA and VDD_IO, all outputs off	_	0.4	1.0	mA
PWRDNb = "0" Byte 2, bit 2 = 0	I _{DD_APD}	VDDA, all outputs off	_	0.6	0.75	mA
	I _{DD_IOPD}	VDD_IO, all outputs off	_	0.3	0.5	mA
Wake-on LAN current	I _{DD_WOL}	VDD, except VDDA and VDD_IO, all differential out- puts off, REF running	_	2.5	3.2	mA
PWRGD_PWRDNb = "0" Byte 2, bit 2 = 1	I _{DD_AWOL}	VDDA, all differential outputs off, REF running	_	0.6	0.75	mA
	I _{DD_IOWOL}	VDD_IO, all differential outputs off, REF running	_	0.3	0.5	mA
	I _{DD_1.5V_Total}	All outputs enabled. Differential clocks with 5" traces and 2 pF load.	_	32	37	mA
Dynamic supply current	I _{DD_OP}	VDD, except VDDA and VDD_IO, all differential out- puts active at 100 MHz	_	9.5	11	mA
	I _{DD_AOP}	VDDA, all differential outputs active at 100 MHz	_	7	8.5	mA
	I _{DD_IOOP}	VDD_IO, all differential outputs active at 100 MHz	_	15.5	19	mA
Si52202 Current Consumption (V	DD = VDDR =	VDDX = VDDA = 1.5 V ±5%)		•	•	
	I _{DD_PD_total}	All outputs off	_	1.3	1.8	mA
Power down current PWRGD/	I _{DD_PD}	VDD, except VDDA and VDD_IO, all outputs off	_	0.4	1.0	mA
PWRDNb = "0"	I _{DD_APD}	VDDA, all outputs off	_	0.3	0.75	mA
	I _{DD_IOPD}	VDD_IO, all outputs off	_	0.6	0.5	mA
	I _{DD_1.5V_Total}	All outputs enabled. Differential clocks with 5" traces and 2 pF load.	_	22	25.5	mA
Dynamic supply current	I _{DD_OP}	VDD, except VDDA and VDD_IO, all differential out- puts active at 100 MHz	_	7	8	mA
	I _{DD_AOP}	VDDA, all differential outputs active at 100 MHz	_	7	8.5	mA
	I _{DD_IOOP}	VDD_IO, all differential outputs active at 100 MHz	_	8	10	mA

Table 5. DC Electrical Specifications (Continued)

(VDD = VDDR = VDDX = VDDA = 1.5 V ±5%)

Table 6. DC Electrical Specifications

(VVDD = VDDR = VDDX = VDDA = 1.8 V ±5%)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
1.8 V Operating voltage	VDD	1.8 V ±5%	1.71	1.8	1.89	V
Output supply voltage	VDD_IO	Supply voltage for differential Low Power outputs	0.9975	1.05 to 1.8	1.9	V
1.8 V Input high voltage	V _{IH}	Control input pins, except SDATA, SCLK	0.75 V _{DD}	_	VDD+0.3	V
1.8 V Input mid voltage	V _{IM}	Tri-level control input pins, except SDATA, SCLK	0.4 V _{DD}	0.5 V _{DD}	0.6 VDD	V
1.8 V Input low voltage	V _{IL}	Control input pins, except SDATA,SCLK	-0.3	-	0.25 VDD	V
Input high voltage	V _{IHI2C}	SDATA, SCLK	1.11	-	3.3	V
Input low voltage	V _{ILI2C}	SDATA, SCLK	_	-	0.6	V
SDATA, SCLK sink current	I _{PULLUP}	At VOL	4	-		mA
	I _{IN}	Single-ended inputs, VIN = GND, VIN = VDD	-5	—	5	uA
Input current	I _{INP}	Single-ended inputs, VIN = 0 V, inputs with internal pull-up resistors VIN = VDD, inputs with internal pull-down resistors	-200	_	200	uA
Input pin capacitance	C _{IN}		1.5	_	5	pF
Output pin capacitance	C _{OUT}		_	_	6	pF
Pin inductance	L _{IN}		_	_	7	nH
Si52212 Current Consumption (VDD = VDDR =	VDDX = VDDA = 1.8 V ±5%)				
	I _{DD_PD_total}	All outputs off	_	1.4	2.9	mA
Power down current PWRGD/PWRDNb = "0"	I _{DD_PD}	VDD, except VDDA and VDD_IO, all outputs off	_	0.5	2.0	mA
Byte 2, bit $2 = 0$	I _{DD_APD}	VDDA, all outputs off	_	0.6	0.9	mA
	I _{DD_IOPD}	VDD_IO, all outputs off	_	0.3	0.65	mA
Wake-on LAN current	I _{DD_WOL}	VDD, except VDDA and VDD_IO, all differential outputs off, REF running	_	3.0	4.6	mA
PWRGD/PWRDNb = "0" Byte 2, bit 2 = 1	I _{DD_AWOL}	VDDA, all differential outputs off, REF running	_	0.7	0.9	mA
5,00 2,002 2	I _{DD_IOWOL}	VDD_IO, all differential outputs off, REF running	_	0.5	0.65	mA
	I _{DD_1.8V_Total}	All outputs enabled. Differential clocks with 5" traces and 2 pF load.	-	67	78	mA
Dynamic supply current	I _{DD_OP}	VDD, except VDDA and VDD_IO, all differential outputs active at 100 MHz	_	13	16	mA
	I _{DD_AOP}	VDDA, all differential outputs active at 100 MHz	_	7	8.5	mA
	I _{DD_IOOP}	VDD_IO, all differential outputs active at 100 MHz	_	47	56.5	mA
Si52208 Current Consumption (VDD = VDDR =	VDDX = VDDA = 1.8 V ±5%)				
	I _{DD_PD_total}	All outputs off	_	1.4	2.9	mA
Power down current PWRGD/	I _{DD_PD}	VDD, except VDDA and VDD_IO, all outputs off	_	0.5	2.0	mA
PWRDNb = "0" Byte 2, bit 2 = 0	I _{DD_APD}	VDDA, all outputs off	_	0.6	0.9	mA
	I _{DD_IOPD}	VDD_IO, all outputs off	_	0.3	0.65	mA
Wake-on LAN current PWRGD/	I _{DD_WOL}	VDD, except VDDA and VDD_IO, all differential outputs off, REF running	_	3.0	4.6	mA
PWRDNb = "0" Byte 2, bit 2 = 1	I _{DD_AWOL}	VDDA, all differential outputs off, REF running	-	0.7	0.9	mA
	I _{DD_IOWOL}	VDD_IO, all differential outputs off, REF running	_	0.5	0.65	mA

Table 6. DC Electrical Specifications (Continued)

(VVDD = VDDR = VDDX = VDDA = 1.8 V	/ ±5%)
------------------------------------	--------

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
	I _{DD_1.8V_Total}	All outputs enabled. Differential clocks with 5" traces and 2 pF load.	_	49.5	58.5	mA
Dynamic supply current	I _{DD_OP}	VDD, except VDDA and VDD_IO, all differential outputs active at 100 MHz	_	11.5	14	mA
	I _{DD_AOP}	VDDA, all differential outputs active at 100 MHz	_	7	8.5	mA
	I _{DD_IOOP}	VDD_IO, all differential outputs active at 100 MHz	-	31	38	mA
Si52204 Current Consumption (VDD = VDDR =	VDDX = VDDA = 1.8 V ±5%)				
	I _{DD_PD_total}	All outputs off	_	1.4	2.9	mA
Power down current PWRGD/	I _{DD_PD}	VDD, except VDDA and VDD_IO, all outputs off	_	0.5	2.0	mA
PWRDNb = "0" Byte 2, bit 2 = 0	I _{DD_APD}	VDDA, all outputs off	_	0.6	0.9	mA
	I _{DD_IOPD}	VDD_IO, all outputs off	_	0.3	0.65	mA
Wake-on LAN current PWRGD/	I _{DD_WOL}	VDD, except VDDA and VDD_IO, all differential outputs off, REF running	_	3.0	4.6	mA
PWRDNb = " 0 " Byte 2, bit 2 = 1	I _{DD_AWOL}	VDDA, all differential outputs off, REF running	-	0.7	0.9	mA
	I _{DD_IOWOL}	VDD_IO, all differential outputs off, REF running	_	0.5	0.65	mA
	I _{DD_1.8V_Total}	All outputs enabled. Differential clocks with 5" traces and 2 pF load.	_	33	38	mA
Dynamic supply current	I _{DD_OP}	VDD, except VDDA and VDD_IO, all differential outputs active at 100 MHz	_	10	12	mA
	I _{DD_AOP}	VDDA, all differential outputs active at 100 MHz	_	7	8.5	mA
	I _{DD_IOOP}	VDD_IO, all differential outputs active at 100 MHz	_	16	19.5	mA
Si52202 Current Consumption (VDD = VDDR =	VDDX = VDDA = 1.8 V ±5%)				
	I _{DD_PD_total}	All outputs off	_	1.4	2.9	mA
Power down current PWRGD/	I _{DD_PD}	VDD, except VDDA and VDD_IO, all outputs off	_	0.5	2.0	mA
PWRDNb = "0"	I _{DD_APD}	VDDA, all outputs off	_	0.6	0.9	mA
	I _{DD_IOPD}	VDD_IO, all outputs off	_	0.3	0.65	mA
	I _{DD_1.8V_Total}	All outputs enabled. Differential clocks with 5" traces and 2 pF load.	_	24	26.5	mA
Dynamic supply current	I _{DD_OP}	VDD, except VDDA and VDD_IO, all differential outputs active at 100 MHz	_	8	9	mA
	I _{DD_AOP}	VDDA, all differential outputs active at 100 MHz	_	7	8.5	mA
	I _{DD_IOOP}	VDD_IO, all differential outputs active at 100 MHz	_	8	10.5	mA

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Clock Input						
CLKIN frequency			-	25	-	MHz
CLKIN duty cycle	T _{DC}	Measured at VDD/2	45	_	55	%
CLKIN rising and falling slew rate	T _R /T _F	Measured between 0.2 VDD and 0.8 VDD	0.5	_	4	V/ns
Input high voltage	V _{IH}	XIN/CLKIN pin	0.75 V _{DD}	_	_	V
Input low voltage	V _{IL}	XIN/CLKIN pin	-		0.25 V _{DD}	V
Input common mode	V _{COM}	Common mode input voltage	300	_	1000	mV
Input amplitude	V _{SWING}	Peak to Peak value	300	-	1450	mV
Control Input Pins						
Trise	Tr	Rise time of single-ended control inputs	-	—	5	ns
Tfall	Τ _f	Fall time of single-ended control inputs	-	_	5	ns
SDATA, SCLK rise time	T _{rI2C}	(Max V _{IL} – 0.15) to (Min V _{IH} + 0.15)	_	_	1000	ns
SDATA, SCLK fall time	T _{fI2C}	(Min V_{IH} + 0.15) to (Max V_{IL} – 0.15)	-	_	300	ns
I ² C operating frequency	F _{maxl} ² C	Maximum I ² C operating frequency	-	_	400	kHz
LVCMOS - REF (V _{DD} = 1.5 V ±5%))					
Long Accuracy	ppm	Variation from reference frequency		0		ppm
Clock Period	T _{PERIOD}	25 MHz output	-	40	_	ns
	T _{rf}	Byte 2[1:0] = 48 (Slowest), 20% to 80% of VDDREF	-	0.5	1.0	V/ns
		Byte 2[1:0] = 49 (Slow), 20% to 80% of VDDREF	_	0.7	1.3	V/ns
Slew rate		Byte 2[1:0] = 4A (Fast), 20% to 80% of V _{DDREF}	-	0.9	1.5	V/ns
		Byte 2[1:0] = 4B (Fastest), 20% to 80% of V _{DDREF}	_	0.9	1.6	V/ns
Duty cycle ¹	T _{DC_REF}	$V_{T} = V_{DD}/2 V$	45	50	55	%
Cycle-to-cycle jitter	T _{CCJ_REF}	V _T = V _{DD} /2 V using "SLOW" Setting	_	40	70	ps
Phase jitter	RMS _{REF}	12 kHz to 5 MHz	_	0.35	0.45	ps
REF noise floor	T _{J1kHz_REF}	1 kHz offset	_	-132	-124	dBc/Hz
REF noise floor	T _{J10kHz_REF}	10 kHz offset to Nyquist	-	-145	-138	dBc/Hz
LVCMOS – REF (V _{DD} = 1.8 V ±5%)		1				
Long accuracy	ppm	Variation from reference frequency		0		ppm
Clock period	T _{PERIOD}	25 MHz output	-	40	_	ns
	T _{rf}	Byte 2[1:0] = 48 (Slowest), 20% to 80% of V _{DDREF}	-	0.7	1.3	V/ns
		Byte 2[1:0] = 49 (Slow), 20% to 80% of V _{DDREF}	-	1.0	1.6	V/ns
Slew rate		Byte 2[1:0] = 4A (Fast), 20% to 80% of V _{DDREF}	-	1.1	1.9	V/ns
		Byte 2[1:0] = 4B (Fastest), 20% to 80% of V _{DDREF}	-	1.2	2.0	V/ns
Duty cycle ¹	T _{DC REF}	$V_{\rm T} = V_{\rm DD}/2 V$	45	50	55	%
Cycle-to-cycle jitter	T _{CCJ_REF}	$V_T = V_{DD}/2 V$ using "SLOW" Setting	-	30	50	ps
Phase jitter	RMS _{REF}	VT - VDD/2 V dsing SLOW Setting - 30 30 12 kHz to 5 MHz - 0.3 0.4		0.4	ps	
REF noise floor	TJ _{1kHz_REF}	1 kHz offset	-	-132	-124	dBc
REF noise floor	 TJ _{10kHz_REF}	10 kHz offset to Nyquist	-	-145	-139	dBc

Table 7. AC Electrical Specifications

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
DIFF HCSL						
Duty cycle	T _{DC}	Measured at 0 V differential	45	50	55	%
Output-to-output skew	T _{SKEW}	Measured at 0 V differential	_	10	50	ps
Slew rate	т /т	Measured differentially from ±150 mV (fast setting)	_	2.4	3.7	V/ns
Siew Tale	T _R /T _F	Measured differentially from ±150 mV (slow setting)	_	1.9	2.9	V/ns
Slew rate matching	Delta T _R /T _F		_	2	10	%
Max modulation frequency df/dt	T _{max-freqmod-} slew		_	_	1250	ppm/usec
Voltage high	V _{HIGH}		600	_	850	mV
Voltage low	V _{LOW}		-150	_	150	mV
Max voltage	V _{MAX}		_	750	1150	mV
Min voltage	V _{MIN}		-300	0	—	mV
Crossing point voltage	V _{OX}	Absolute crossing point voltage at 0.7 V Swing	250	_	550	mV
Crossing point voltage (var)	V _{OX_DELTA}	Variation of VOX over all rising clock edges	_	35	70	mV
Modulation frequency	F _{MOD}		30	31.5	33	kHz
Enable/Disable and Setup						
Clock stabilization from power-up	T _{STABLE}	Min ramp rate 200 V/s	_	1	5	ms
OE_b latency	T _{OEBLAT}	Differential outputs start after OE_b assertion differential outputs stop after OE_b deassertion	—	2	3.5	clocks
PWRDNb latency to differential outputs enable	T _{PWRDNb}	Differential outputs enable after PD_b deassertion	_	490	520	μs

Table 7. AC Electrical Specifications (Continued)

1. This is for XTAL mode only. For CLKIN mode, there would be a duty cycle distortion spec of ± 0.5 ns.

Parameter	Symbol	Condition	Min	Тур	Max	Jitter Limit	Unit
DIFF HCSL							
Cycle-to-cycle jitter	J ^{CCI}	Measured at 0 V differential	-	16	23		ps (pk-pk)
PCIe gen 1 Pk-Pk jitter	J _{Pk-Pk}	PCIe Gen 1	0	25	33	86	ps (pk-pk)
PCle gen 2 phase jitter		10 kHz < F < 1.5 MHz	0	0.18	0.24	3	ps (RMS)
	J _{RMSGEN2}	1.5 MHz < F < Nyquist	0	1.4	1.7	3.1	ps (RMS)
PCIe gen 3 phase jitter	J _{RMSGEN3}	Includes PLL BW 2 to 4 MHz, CDR = 10 MHz	_	0.3	0.38	1.0	ps (RMS)
PCIe gen 3 SRIS phase jitter ¹	J _{RMSGen3_SRIS}	Includes PLL BW 2 to 4 MHz, CDR = 10 MHz	_	0.37	0.44	0.7	ps (RMS)
PCIe gen 4 phase jitter	J _{RMSGen4}	Includes PLL BW 2 to 4 MHz, CDR = 10 MHz	_	0.3	0.38	0.5	ps (RMS)
PCIe gen 4 SRIS phase jitter ¹	J _{RMSGen4_SRIS}	ncludes PLL BW 2 to 4 MHz, CDR = 10 MHz		0.38	0.45	0.5	ps (RMS)
PCIe gen 5 phase jitter ²	J _{RMSGen5}	ncludes PLL BW 500 kHz to 1.8 MHz, CDR = 20 MHz		0.11	0.135	0.15	ps (RMS)
PCIe gen 5 SRIS phase jitter ¹	J _{RMSGen5_SRIS}	Includes PLL BW 500 kHz to 1.8 MHz, CDR = 20 MHz		0.11	0.13	0.18	ps (RMS)
PCIe gen 6 phase jitter ³	J _{RMSGen6}	Includes PLL BW 500 kHz to 1.0 MHz, CDR = 10 MHz	_	0.066	0.085	0.100	ps (RMS)
PCIe gen 6 SRIS phase jitter ¹	J _{RMSGen6_SRIS}	Includes PLL BW 500 kHz to 1.0 MHz, CDR = 10 MHz	_	0.087	0.105	0.106	ps (RMS)
PSNR ⁴	•	•					•
Spurs induced by external	PSNR _{1.8V}	100 kHz 200 kHz 300 kHz 500 kHz 1 MHz	- - - -	-63.4 -61.5 -59.1 -54.5 -50.4	 	 	dBc
power supply noise on V _{DDA} , 100 mVpp ripple	PSNR _{1.5V}	100 kHz 200 kHz 300 kHz 500 kHz 1 MHz	- - - -	-65.9 -63.9 -60.3 -53.5 -46.0		 	dBc
Intel QPI Specifications for 100	MHz and 133 MH	İz					
Intel QPI and SMI REFCLK accumulated jitter ^{5,6}	J _{RMSQPI_SMI}	8 Gb/s, 100 MHz, 12UI	_	0.13	0.22	0.3	ps (RMS)
Intel QPI and SMI REFCLK accumulated jitter ^{5,6}	J _{RMSQPI_SMI}	9.6 Gb/s, 100 MHz, 12UI	—	0.11	0.19	0.2	ps (RMS)
Intel QPI and SMI REFCLK accumulated jitter ^{5,7}	J _{RMSQPI_SMI}	6.4 Gb/s, 100/133 MHz, 12UI, 7.8M	_	0.15	0.35	0.5	ps (RMS)

Table 8. PCIe and Intel QPI Jitter Specifications

The SRIS jitter limit is the system RefClk simulation budget divided by sqrt (2) for equal allocation of uncorrelated jitter between two clocks.
 Based on PCI Express® Base Specifications Revision 5.0 Version 1.0.
 Based on PCIE Express® Base Specifications Revision 6.0 Version 1.0.

For PSNR testing methodology, please see AN491: Power Supply Rejection for Low-Jitter Clocks.
 Post processed evaluation through Intel supplied Matlab scripts.

6. Measuring on 100 MHz output using the template file in the PCIe Jitter Tool.

7. Based on PCIe Express® Base Specifications Revision 6.0 Version 1.0.

Table	9.	Thermal	Conditions
-------	----	---------	------------

Parameter	Symbol	Test Condition	Value	Units
Si52202 - 20-QFN ¹				
Thermal resistance, junction to ambient	θ _{JA}	Still Air Air Flow 1 m/s Air Flow 2 m/s	60 56 54.4	°C/W
Thermal resistance, junction to case	θ _{JC}		10.8	°C/W
Thermal resistance, junction to board	θ _{JB}		34.1	°C/W
Thermal resistance, junction to top center	Ψ _{IT}		3.1	°C/W
Thermal resistance, junction to board	Ψ _{JB}		33.9	°C/W
Si52204 - 32-QFN ²	- I			
Thermal resistance, junction to ambient	θ _{JA}	Still Air Air Flow 1 m/s Air Flow 2 m/s	50.3 47 45.6	°C/W
Thermal resistance, junction to case	θ _{JC}		10.3	°C/W
Thermal resistance, junction to board	θ _{JB}		30.9	°C/W
Thermal resistance, junction to top center	Ψ _{JT}		2.3	°C/W
Thermal resistance, junction to board	Ψ _{JB}		30.9	°C/W
Si52208 - 48-QFN ³				1
Thermal resistance, junction to ambient	θ _{JA}	Still Air Air Flow 1 m/s Air Flow 2 m/s	27.9 24.5 23.5	°C/W
Thermal resistance, junction to case	θ _{JC}		17	°C/W
Thermal resistance, junction to board	θ _{JB}		13.4	°C/W
Thermal resistance, junction to top center	Ψ _{JT}		0.5	°C/W
Thermal resistance, junction to board	Ψ _{JB}		13.1	°C/W
Si52212 - 64-QFN ⁴	1			1
Thermal resistance, junction to ambient	θ _{JA}	Still Air Air Flow 1 m/s Air Flow 2 m/s	27.2 23.9 22.5	°C/W
Thermal resistance, junction to case	θ _{JC}		13.7	°C/W
Thermal resistance, junction to board	θ _{JB}		14.4	°C/W
Thermal resistance, junction to top center	Ψ _{JT}		0.5	°C/W
Thermal resistance, junction to board	Ψ _{JB}		14.2	°C/W
			1	

1. Based on a 4 layer, PCB with Dimension 3"x 4.5". PCB Thickness of 1.6mm. PCB Center Land with 4 Via to top plane.

Based on PCB with dimension 3" x 4.5", PCB Thickness of 1.6 mm. PCB Center Land with 4 Via to top plane.
 Based on 4 layer PCB with dimension 3" x 4.5", PCB Thickness of 1.6 mm. PCB Center Land with 9 Via to top plane.

4. Based on 4 Layer PCB with dimension 3" x 4.5", PCB Thickness of 1.6 mm. PCB Center Land with 25 Via to top plane.

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Main supply voltage	V _{DD_1.8V}	Functional	_	_	2.5	V
Input voltage	V _{IN}	Relative to VSS	-0.5	_	VDD + 0.5	V
Input high voltage i ² c	V _{IH_I2C}	SDATA and SCLK	_		3.6	V
Temperature, storage	Τ _S	Non-functional	-65	_	150	Celsius
Temperature, operating ambient	T _A	Functional	-40	_	85	Celsius
Temperature, junction	Tj	Functional	_	_	125	Celsius
ESD protection (human body model)	ESDHBM	JEDEC (JESD 22-A114)	-2000	—	2000	V
Flammability rating	UL-94	UL (Class)	V-0			

Table 10. Absolute Maximum Conditions^{1 2}

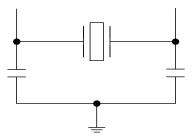
While using multiple power supplies, the voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is not required.
 Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value. Exceeding any of the limits listed here may result in permanent damage to the device.

ESD Handling: Industry-standard ESD handling precautions must be adhered to at all times to avoid damage to this device.

5. Functional Description

5.1. Crystal Recommendations

The clock device requires a parallel resonance crystal.


Table 11. Crystal Recommendations

Frequency (Fund)	Cut	Loading	Load Cap	Shunt Cap (Max)	Motional (Max)	Tolerance (Max)	Stability (Max)	Aging (Max)
25 MHz	AT	Parallel	8 to 15 pF	5 pF	0.016 pF	35 ppm	30 ppm	5 ppm

5.2. Crystal Loading

Crystal loading is critical in achieving low ppm performance. To realize low ppm performance, use the total capacitance the crystal sees to calculate the appropriate capacitive loading (CL).

The figure below shows a typical crystal configuration using the two trim capacitors. It is important that the trim capacitors are in series with the crystal.

Figure 9. Crystal Capacitive Clarification

5.3. Calculating Load Capacitors

In addition to the standard external trim capacitors, consider the trace capacitance and pin capacitance to calculate the crystal loading correctly. The total capacitance on both sides is twice the specified crystal load capacitance (CL). Trim capacitors are calculated to provide equal capacitive loading on both sides.

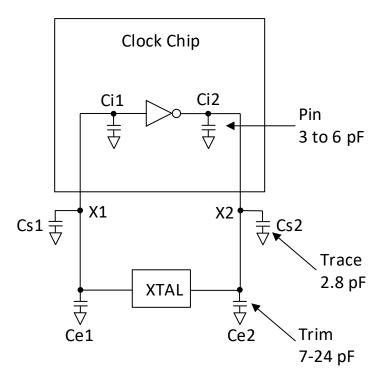
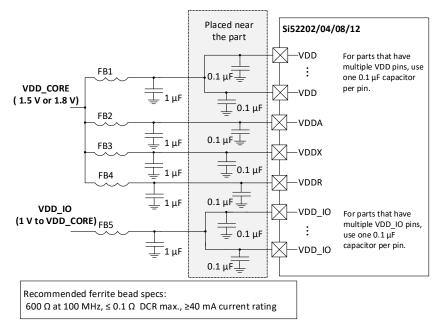


Figure 10. Crystal Loading Example

Use the following formulas to calculate the trim capacitor values for Ce1 and Ce2:

Load Capacitance (Each Side)


$$Ce = 2 \times CL - (Cs + Ci)$$

Total Capacitance (As Seen by the Crystal)

$$CLe = \frac{1}{\left(\frac{1}{Ce + Cs1 + Ci1} + \frac{1}{Ce^2 + Cs^2 + Ci^2}\right)}$$

- CL: Crystal load capacitance
- CLe: Actual loading seen by crystal using standard value trim capacitors
- Ce: External trim capacitors
- Cs: Stray capacitance (terraced)
- Ci: Internal capacitance (lead frame, bond wires, etc.)

Figure 11. Power Supply Filtering

Separate out each type of VDD (VDD, VDDA, VDDX, VDDR, and VDD_IO) using ferrite beads. Then, for each VDD type use one 1 μ F bulk capacitor along with an additional 0.1 μ F capacitor for each individual VDD pin. All VDD Core (VDD, VDDA, VDDX, and VDDR) pins should be tied to the same voltage, either 1.8 V or 1.5 V. The VDD_IO pins can be tied to a voltage between 1 V and the selected VDD Core voltage. Note, the VDD_IO pins must all be tied to the same voltage.

5.5. PWRGD/PWRDNb (Power Down) Pin

The PWRGD/PWRDNb pin is a dual-function pin. During initial power up, the pin functions as the PWRGD pin. Upon the first power up, if the PWRGD pin is low, all outputs, the crystal oscillator, and the I²C logics will be disabled. Once the PWRGD pin has been sampled high by the clock chip, the pin assumes a PWRDNb functionality. When the pin has assumed a PWRDNb functionality and is pulled low, the device will be placed in power down mode. The assertion and dessertion of PWRDNb is asynchronous. This pin has a 100 k Ω internal pull-up.

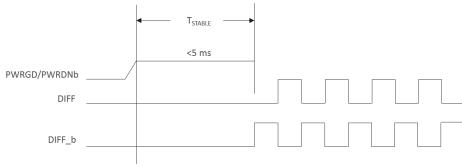
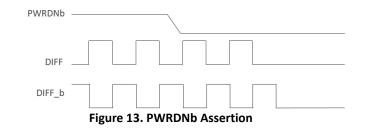



Figure 12. Initial Sample High of PWRGD/PWRDNb After Power Up

5.6. PWRDNb (Power Down) Assertion

The PWRDNb pin is an asynchronous active low input used to disable all output clocks in a glitch-free manner. In power down mode, all outputs, the crystal oscillator, and the I²C logic are disabled. In cases where the REF PWRDN (Byte 2, bit 2) is set to 1, the crystal oscillator and REF output will still be enabled. All disabled outputs will be driven low.

5.7. PWRDNb (Power Down) Deassertion

When a valid rising edge on PWRGD/PWRDNb pin is applied, all outputs are enabled in a glitch-free manner within 520 μ s.

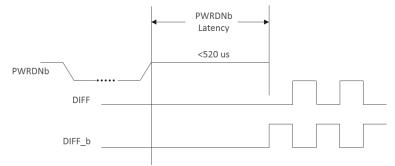


Figure 14. Subsequent Deassertion of PWRDNb

5.8. OEb Pin

The OEb pin is an active low input used to enable and disable the output clock. To enable the output clock, the OEb pin needs to be logic low, and I^2C OE bit needs to be logic high. By default, the OEb pin is set to logic low, and I^2C OE bit is set to logic high.There are two methods to disable the output clock: the OEb pin is pulled to a logic high, or the I^2C OE bit is set to a logic low. This pin has a 100 k Ω internal pull-down.

5.9. OEb Assertion

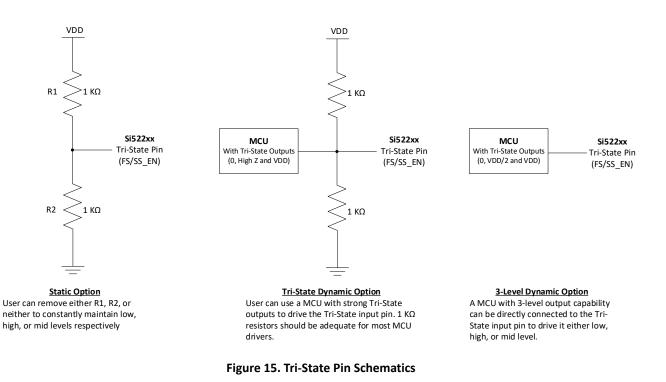
The OEb pin is an active low input used for synchronous stopping and starting the respective output clock while the rest of the clock generator continues to function. The assertion of the OEb function is achieved by pulling the OEb pin low while the I²C OE bit is high, which causes the respective stopped output to resume normal operation. No short or stretched clock pulses are produced when the clocks resume.

5.10. OEb Deassertion

The OEb function is deasserted by pulling high or writing the I²C OE bit to a logic low. The corresponding output is stopped cleanly and the final output state is driven low.

5.11. FS Pin

The FS pin will select 0 = 100 MHz, mid = 200 MHz, and 1 = 133 MHz. This is a tri-state pin, which has a weak internal pull-down of approximately 100 k Ω .


The default output frequency is 100 MHz.

5.12. SS_EN Pin

The SS_EN pin will select 0 = -0.25% spread, mid = Spread is off, and 1 = -0.5% spread. This is a tri-state pin, which has a weak internal pull-up of approximately 100 k Ω .

The default is -0.5% spread.

5.13. Recommendations for Driving Tri-State Pins

5.14. REF/SA Pin

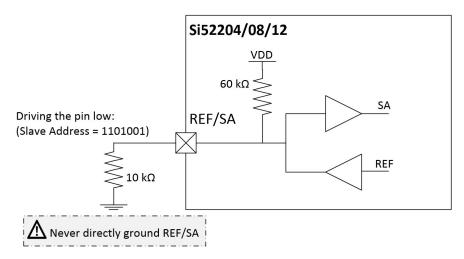
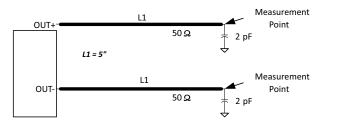


Figure 16. REF/SA Pin Function


The REF/SA pin is a dual-function input/output pin.

The SA functionality sets the Slave Address of the part. This address is latched to the value of the pin when the part initially powers up. See Table 12, "SA State on First Application of PWRDNb," on page 29 for the available addresses. By default, the internal 60 k Ω pull-up resistor will set SA to a value of 1. To drive the pin low, use a 10 k Ω pull-down resistor.

After the I²C address is latched on first power up, the REF/SA pin assumes its REF functionality. In REF mode, it will output a 25 MHz LVCMOS signal.

6. Test and Measurement Setup

The following diagrams show the test load configuration for the differential clock signals.

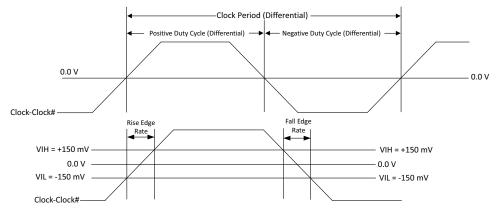


Figure 18. Differential Output Signals (for AC Parameters Measurement)

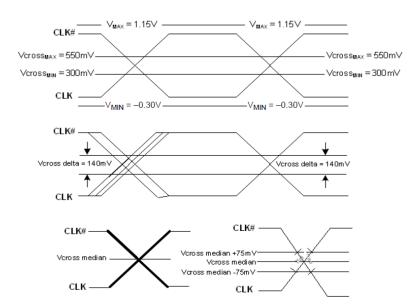


Figure 19. Single-Ended Measurement for Differential Output Signals (for AC Parameters Measurement)

7. PCIe Clock Jitter Tool

The PCIe Clock Jitter Tool is designed to enable users to quickly and easily take jitter measurements for PCIe Gen1/ 2/3/4/5 and SRNS/SRIS. This software removes all the guesswork for PCIe Gen1/2/3/4/5 and SRNS/SRIS jitter measurements and margins in board designs. This software tool will provide accurate results in just a few clicks, and is provided in an executable format to support various common input waveform files, such as .csv, .wfm, and .bin. The easy-to-use GUI and helpful tips guide users through each step. Release notes and other documentation are also included in the software package.

Download it for free at Timing - PCI Express Learning Center.

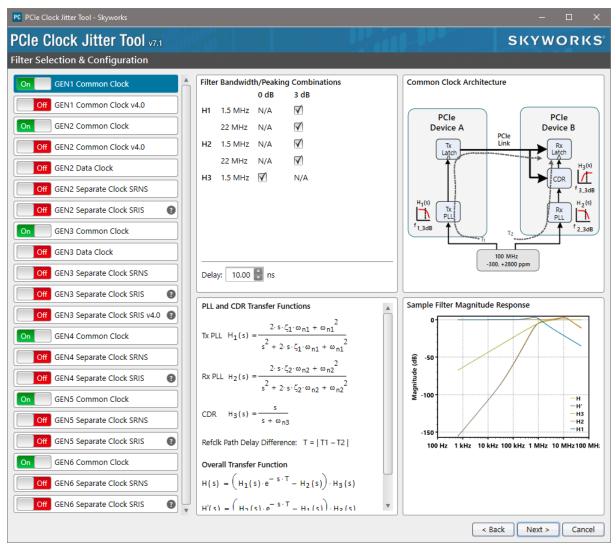


Figure 20. PCIe Clock Jitter Tool

8. Control Registers

8.1. I²C Interface

To enhance the flexibility and function of the clock synthesizer, an I^2C interface is provided. Through the I^2C interface, various device functions, such as individual clock output buffers, are individually enabled or disabled. The registers associated with the I^2C interface initialize to their default setting at power-up. The use of this interface is optional. Clock device register changes are normally made at system initialization, if any are required.

8.2. Block Read/Write

The clock driver I²C protocol accepts block write and block read operations from the controller. For block write/ read operation, access the bytes in sequential order from lowest to highest (most significant bit first) with the ability to stop after any complete byte is transferred. The block write and block read protocol is outlined in Block Read and Block Write Protocol.

8.3. Block Read

After the slave address is sent with the R/W condition bit set, the command byte is sent with the MSB = 0. The slave acknowledges the register index in the command byte. The master sends a repeat start function. After the slave acknowledges this, the slave sends the number of bytes it wants to transfer (>0 and \leq 7). The master acknowledges each byte except the last and sends a stop condition.

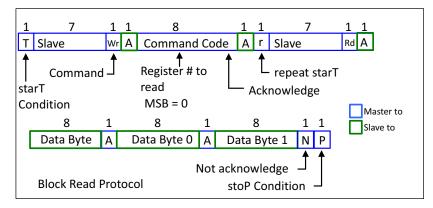


Figure 21. Block Read Protocol

8.4. Block Write

After the slave address is sent with the R/W condition bit not set, the command byte is sent with the MSB = 0. The lower seven bits indicate the register at which to start the transfer. If the command byte is 00h, the slave device will be compatible with existing block mode slave devices. The next byte of a block write must be the count of bytes that the master will transfer to the slave device. The byte count must be greater than zero and less than 7. Following this byte are the data bytes to be transferred to the slave device. The slave device always acknowledges each byte received. The transfer is terminated after the slave sends the Ack and the master sends a stop function.

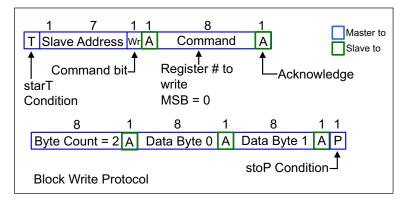


Figure 22. Block Write Protocol

8.5. Byte Read/Write

Reading or writing a register in an I²C slave device in byte mode always involves specifying the register number. Refer to Byte Read and Byte Write Protocol for byte read and byte write protocol.

8.6. Byte Read

The standard byte read is as shown in the figure below. It is an extension of the byte write. The write start condition is repeated; then, the slave device starts sending data, and the master acknowledges it until the last byte is sent. The master terminates the transfer with a Nack, then a stop condition. For byte operation, the MSB bit of the command byte must be set. For block operations, the MSB bit must be set low. If the bit is not set low, the next byte must be the byte transfer count.

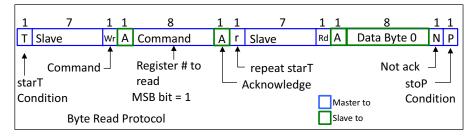


Figure 23. Byte Read Protocol

8.7. Byte Write

The figure below illustrates a simple, typical byte write. For byte operation, the MSB bit of the command byte must be set high. For block operations, the MSB bit must be set. If the bit is not set, the next byte must be the byte transfer count. The count can be between 1 and 32. It is not allowed to be zero or to exceed 32.

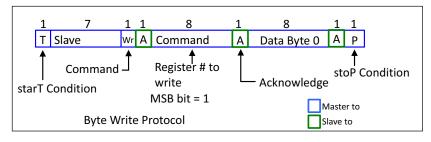


Figure 24. Byte Write Protocol

8.8. Data Protocol

The clock driver I²C protocol accepts byte write, byte read, block write, and block read operations from the controller. For block write/read operations, the system controller can access the bytes in sequential order from lowest to highest (most significant bit first) with the ability to stop after any complete byte is transferred. For byte write and byte read operations, the system controller can access individually indexed bytes. The block write and block read protocol is outlined in Block Read and Block Write Protocol while Byte Read and Byte Write Protocol outlines byte write and byte read protocol. SA is the address select for I²C. When the part is powered up, SA will be latched to select the I²C address.

Description	SA	Address
State of SA on first deassertion of PWRDNb	0	1101001
	1	1101010

Table 13. Block Read and Block Write Protocol

Block Writ	te Protocol	Block Read Protocol		
Bit	Description	Bit	Description	
1	Start	1	Start	
8:2	Slave address—7 bits	8:2	Slave address–7 bits	
9	Write	Write 9		
10	Acknowledge from slave	Acknowledge from slave 10		
18:11	Command Code—8 bits	18:11	Command Code-8 bits	
19	Acknowledge from slave	19	Acknowledge from slave	
27:20	Byte Count—8 bits	20 Repeat start		
28	Acknowledge from slave	27:21 Slave address–7 bits		
36:29	Data byte 1–8 bits	28	Read = 1	

Block	« Write Protocol	Block Read Protocol			
Bit	Description	Bit	Description		
37	Acknowledge from slave	29	Acknowledge from slave		
45:38	Data byte 2–8 bits	37:30	Byte Count from slave-8 bits		
46	Acknowledge from slave	38	Acknowledge		
	Data Byte/Slave Acknowledges	46:39	Data byte 1 from slave-8 bits		
	Data Byte N–8 bits	47	Acknowledge		
	Acknowledge from slave	55:48	Data byte 2 from slave-8 bits		
	Stop	56	Acknowledge		
			Data bytes from slave/Acknowledge		
			Data Byte N from slave-8 bits		
			NOT Acknowledge		
			Stop		

Table 13. Block Read and Block Write Protocol (Continued)

Table 14. Byte Read and Byte Write Protocol

Byte W	/rite Protocol	Byte	Read Protocol
Bit	Description	Bit	Description
1	Start	1	Start
8:2	Slave address–7 bits	8:2	Slave address–7 bits
9	Write	9	Write
10	Acknowledge from slave	iowledge from slave 10 Acknowledge f	
18:11	Command Code-8 bits	Command Code–8 bits 18:11	
19	Acknowledge from slave	19	Acknowledge from slave
27:20	Data byte–8 bits	20	Repeated start
28	Acknowledge from slave	27:21	Slave address–7 bits
29	Stop	28	Read
		29	Acknowledge from slave
		37:30	Data from slave-8 bits
		38	NOT Acknowledge
		39	Stop

8.9. Register Tables

8.9.1. Si52212 Registers

Bit	Name	If Bit = 0	If Bit = 1	Туре	Default	Function
7	DIFF7_OE	Disabled	Enabled	RW	1	Output enable for DIFF[7]
6	DIFF6_OE	Disabled	Enabled	RW	1	Output enable for DIFF[6]
5	DIFF5_OE	Disabled	Enabled	RW	1	Output enable for DIFF[5]
4	DIFF4_OE	Disabled	Enabled	RW	1	Output enable for DIFF[4]
3	DIFF3_OE	Disabled	Enabled	RW	1	Output enable for DIFF[3]
2	DIFF2_OE	Disabled	Enabled	RW	1	Output enable for DIFF[2]
1	DIFF1_OE	Disabled	Enabled	RW	1	Output enable for DIFF[1]
0	DIFF0_OE	Disabled	Enabled	RW	1	Output enable for DIFF[0]

Table 15. Si52212 Control Register 0. Byte 0

Table 16. Si52212 Control Register 1. Byte 1

Bit	Name	If Bit = 0	If Bit = 1	Туре	Default	Function	
7	DIFF11_OE	Disabled	Enabled	RW	1	Output enable for DIFF[11]	
6	DIFF10_OE	Disabled	Enabled	RW	1	Output enable for DIFF[10]	
5	DIFF9_OE	Disabled	Enabled	RW	1	Output enable for DIFF[9]	
4	DIFF8_OE	Disabled	Enabled	RW	1	Output enable for DIFF[8]	
3		Reser	wod	•	0	Reserved	
2		Reser	veu		0	- Reserved	
1	SS_EN_READ1			R	0	Spread Enable software readback $00 = -$	
0	SS_EN_READO			R	0	0.25%; 01 = OFF; 10 = OFF; 11 = -0.5% The value of SS_EN_READ is latched on power-up.	

Table 17. Si52212 Control Register 2. Byte 2

Bit	Name	lf Bit = 0	If Bit = 1	Туре	Default	Function
7	SS_EN_SW_HW_CTRL	Read back Byte 1[1:0]	SS control by Byte 2 [6:5]	RW	0	Enable software control of spread
6	SS_EN_SW1			RW	0	Software control of spread 00 = -0.25%; 01 = OFF; 10 = OFF;
5	SS_EN_SW0			RW 1		11 = -0.5%
4	Reserved				0	Reserved
3	REF_OE	Disabled	Enabled	RW	1	Output Enable for REF
2	REF PWRDN	REF output is disabled in Power Down.	REF output is enabled in Power Down	RW	0	Wake-on LAN for REF. To have REF out- put enabled in Power Down, REF_OE needs to be enabled at the same time.
1	REF SLR			RW	0	REF Output Slew Rate Control 00 = Slowest; 01 = Slow; 10 = Fast;
0				RW	1	11 = Fastest

Bit	Name	If Bit = 0	If Bit = 1	Туре	Default	Function
7	SR_SEL_DIFF7	Slow setting	Fast setting	RW	1	Slew rate control for DIFF7
6	SR_SEL_DIFF6	Slow setting	Fast setting	RW	1	Slew rate control for DIFF6
5	SR_SEL_DIFF5	Slow setting	Fast setting	RW	1	Slew rate control for DIFF5
4	SR_SEL_DIFF4	Slow setting	Fast setting	RW	1	Slew rate control for DIFF4
3	SR_SEL_DIFF3	Slow setting	Fast setting	RW	1	Slew rate control for DIFF3
2	SR_SEL_DIFF2	Slow setting	Fast setting	RW	1	Slew rate control for DIFF2
1	SR_SEL_DIFF1	Slow setting	Fast setting	RW	1	Slew rate control for DIFF1
0	SR_SEL_DIFF0	Slow setting	Fast setting	RW	1	Slew rate control for DIFF0

Table 18. Si52212 Control Register 3. Byte 3

Table 19. Si52212 Control Register 4. Byte 4

Bit	Name	lf Bit = 0	If Bit = 1	Туре	Default	Function
7	SR_SEL_DIFF11	Slow setting	Fast setting	RW	1	Slew rate control for DIFF11
6	SR_SEL_DIFF10	Slow setting	Fast setting	RW	1	Slew rate control for DIFF10
5	SR_SEL_DIFF9	Slow setting	Fast setting	RW	1	Slew rate control for DIFF9
4	SR_SEL_DIFF8	Slow setting	Fast setting	RW	1	Slew rate control for DIFF8
3	AMP			RW	1	DIFF Differential Outputs Amplitude Adjust- ment.
2	AMP			RW	0	0110 : 600 mV
1	AMP			RW	0	0111 : 650 mV 1000 : 700 mV
0	AMP			RW	0	1001 : 750 mV 1010 : 800 mV 1011 : 850 mV

Table 20. Si52212 Control Register 5. Byte 5

Bit	Name	If Bit = 0	If Bit = 1	Туре	Default	Function
7				R	0	
6		Rev Code [7:4]		R	0	Revision Code
5		Nev code [7.4]		R	0	Nevision code
4				R	0	
3				R	1	
2		Vendor ID[3:0]			0	Vendor Identification Code
1				R	0	
0				R	0	

Bit	Name	If Bit = 0	If Bit = 1	Туре	Default	Function
7				R	0	
6				R	0	
5		R 0				
4		rogramming ID [7:	01	R	0	Programming ID (Internal Only)
3		ogramming iD [7.	0]	R	0	
2					0	
1					0	
0				R	0	

Table 21. Si52212 Control Register 6. Byte 6

8.9.2. Si52208 Registers

Bit	Name	If Bit = 0	If Bit = 1	Туре	Default	Function
7		Rese	rved	0	Reserved	
6	DIFF4_OE	Disabled	Enabled	RW	1	Output enable for DIFF_4
5	DIFF3_OE	Disabled	Enabled	RW	1	Output enable for DIFF_3
4		Rese	rved		0	Reserved
3		Rese	rved		0	Reserved
2	DIFF2_OE	Disabled	Enabled	RW	1	Output enable for DIFF_2
1	DIFF1_OE Disabled Enabled RW				1	Output enable for DIFF_1
0	DIFF0_OE	Disabled	Enabled	RW	1	Output enable for DIFF_0

Table 22. Si52208 Control Register 0. Byte 0

Table 23. Si52208 Control Register 1. Byte 1

Bit	Name	If Bit = 0	If Bit = 1	Туре	Default	Function
7	DIFF7_OE	Disabled	Enabled	RW	1	Output enable for DIFF_7
6	DIFF6_OE	Disabled	Enabled	RW	1	Output enable for DIFF_6
5		Reser	ved		0	Reserved
4	DIFF5_OE	Disabled	Enabled	RW	1	Output enable for DIFF_5
3		Reser	wed		0 December	Reserved
2		Reser	veu		0	heserveu
1	SS_EN_READ1			R	0	Spread Enable software readback $00 = -0.25\%$; $01 = OFF$; $10 = OFF$; $11 = -0.5\%$
0	SS_EN_READO			R	0	The value of SS_EN_READ is latched on power-up.

			_	-		
Bit	Name	If Bit = 0	If Bit = 1	Туре	Default	Function
7	SS_EN_SW_HW_CTRL	Read back Byte 1[1:0]	SS control by Byte 2 [6:5]	RW	0	Enable software control of spread
6	SS_EN_SW1			RW	0	Software control of spread 00 = – 0.25%; 01 = OFF; 10 = OFF; 11 = –
5	SS_EN_SW0			RW	1	0.25%; 01 = 0FF; 10 = 0FF; 11 = - 0.5%
4		Reserved			0	Reserved
3	REF_OE	Disabled	Enabled	RW	1	Output Enable for REF
2	REF PWRDN	REF output is disabled in Power Down.	REF output is enabled in Power Down	RW	0	Wake-on LAN for REF. To have REF output enabled in Power Down, REF_OE needs to be enabled at the same time.
1	REF SLR			RW	0	REF Output Slew Rate Control 00 = Slowest; 01 = Slow; 10 = Fast;
0				RW	1	11 = Fastest

Table 24. Si52208 Control Register 2. Byte 2

Table 25. Si52208 Control Register 3. Byte 3

Bit	Name	If Bit = 0	If Bit = 1	Туре	Default	Function
7		Reserved		RW	1	Reserved
6	SR_SEL_DIFF_4	SR_SEL_DIFF_4 Slow setting Fast setting				Slew rate control for DIFF_4
5	SR_SEL_DIFF_3	Slow setting	Fast setting	RW	1	Slew rate control for DIFF_3
4		Reserved		RW	1	Reserved
3		Reserved		RW	1	Reserved
2	SR_SEL_DIFF_2	Slow setting	Fast setting	RW	1	Slew rate control for DIFF_2
1	SR_SEL_DIFF_1	SR_SEL_DIFF_1 Slow setting Fast setting			1	Slew rate control for DIFF_1
0	SR_SEL_DIFF_0	Slow setting	Fast setting	RW	1	Slew rate control for DIFF_0

Table 26. Si52208 Control Register 4. Byte 4

Bit	Name	If Bit = 0	If Bit = 1	Туре	Default	Function
7	SR_SEL_DIFF_7	Slow setting	Fast setting	RW	1	Slew rate control for DIFF_7
6	SR_SEL_DIFF_6	Slow setting	Fast setting	RW	1	Slew rate control for DIFF_6
5		Reserved		RW	1	Reserved
4	SR_SEL_DIFF_5	Slow setting	Fast setting	RW	1	Slew rate control for DIFF_5
3	AMP			RW	1	DIFF Differential Outputs Amplitude Adjustment.
2	AMP			RW	0	0110 : 600 mV
1	AMP			RW	0	0111 : 650 mV 1000 : 700 mV
0	AMP			RW	0	1001 : 750 mV 1010 : 800 mV 1011 : 850 mV

Bit	Name	If Bit = 0	If Bit = 1	Туре	Default	Function
7				R	0	
6		Rev Code [7:4]		R	0	Revision Code
5		Nev Code [7.4]		R	0	Nevision code
4				R	0	
3				R	1	
2		Vendor ID[3:0]		R	0	Vendor Identification Code
1				R	0	vendor identification code
0				R	0	

Table 27. Si52208 Control Register 5. Byte 5

Table 28. Si52208 Control Register 6. Byte 6

Bit	Name	lf Bit = 0	If Bit = 1	Туре	Default	Function
7				R	0	
6				R	0	
5				R	0	
4	D	rogramming ID [7:	01	R	0	Programming ID (Internal Only)
3			0]	R	0	
2				R	0	
1	1			R	0	
0	1			R	0	

8.9.3. Si52204 Registers

Bit	Name	If Bit = 0	If Bit = 1	Туре	Default	Function
7		Rese	rved	0	Reserved	
6	DIFF2_OE	Disabled	Enabled	RW	1	Output enable for DIFF_2
5	DIFF1_OE	Disabled	Enabled	RW	1	Output enable for DIFF_1
4		Rese	rved		0	Reserved
3		Rese	rved		0	Reserved
2	DIFF0_OE	Disabled	Enabled	RW	1	Output enable for DIFF_0
1		Reserved	•	RW	0	Reserved
0		Reserved		RW	0	Reserved

Table 29. Si52204 Control Register 0. Byte 0

Bit	Name	lf Bit = 0	If Bit = 1	Туре	Default	Function		
7		Reser	ved	0	Reserved			
6		Reser	ved		0	Reserved		
5		Reser	ved		0	Reserved		
4	DIFF3_OE	Disabled	Enabled	RW	1	Output enable for DIFF_3		
3		Reser	wod		0	Reserved		
2		Reser	veu		0			
1	SS_EN_READ1			R	0	Spread Enable software readback 00 = - 0.25%; 01 = OFF; 10 = OFF; 11 = -0.5%		
0	SS_EN_READ0			R	0	The value of SS_EN_READ is latched on power-up.		

Table 30. Si52204 Control Register 1. Byte 1

Table 31. Si52204 Control Register 2. Byte 2

Bit	Name	lf Bit = 0	If Bit = 1	Туре	Default	Function
7	SS_EN_SW_HW_CTRL	Read back Byte 1[1:0]	SS control by Byte 2 [6:5]	RW	0	Enable software control of spread
6	SS_EN_SW1			RW	0	Software control of spread
5	SS_EN_SW0			RW	1	00 = -0.25%; 01 = OFF; 10 = OFF; 11 = -0.5%
4	R	eserved			0	Reserved
3	REF_OE	Disabled	Enabled	RW	1	Output Enable for REF
2	REF PWRDN	REF output is dis- abled in Power Down.	REF output is enabled in Power Down	RW	0	Wake-on LAN for REF. To have REF output enabled in Power Down, REF_OE needs to be enabled at the same time.
1	REF SLR			RW	0	REF Output Slew Rate Control 00 = Slowest;
0				RW	1	01 = Slow; 10 = Fast; 11 = Fastest

Table 32. Si52204 Control Register 3. Byte 3

Bit	Name	If Bit = 0	If Bit = 1	Туре	Default	Function
7		Reserved		RW	1	Reserved
6	SR_SEL_DIFF_2	Slow setting	Fast setting	RW	1	Slew rate control for DIFF_2
5	SR_SEL_DIFF_1	Slow setting	Fast setting	RW	1	Slew rate control for DIFF_1
4		Reserved		RW	1	Reserved
3		Reserved		RW	1	Reserved
2	SR_SEL_DIFF_0	Slow setting	Fast setting	RW	1	Slew rate control for DIFF_0
1		Reserved		RW	1	Reserved
0		Reserved		RW	1	Reserved

Bit	Name	lf Bit = 0	If Bit = 1	Туре	Default	Function
7		Reserved		RW	1	Reserved
6		Reserved		RW	1	Reserved
5		Reserved		RW	1	Reserved
4	SR_SEL_DIFF_3	Slow setting	Fast setting	RW	1	Slew rate control for DIFF_3
3	AMP			RW	1	DIFF Differential Outputs Amplitude Adjustment.
2	AMP			RW	0	0110 : 600 mV
1	AMP			RW	0	0111 : 650 mV 1000 : 700 mV
0	AMP			RW	0	1001 : 750 mV 1010 : 800 mV 1011 : 850 mV

Table 33. Si52204 Control Register 4. Byte 4

Table 34. Si52204 Control Register 5. Byte 5

Bit	Name	lf Bit = 0	If Bit = 1	Туре	Default	Function
7				R	0	
6		Rev Code [7:4]		R	0	Revision Code
5		Rev Code [7.4]		R	0	
4				R	0	
3				R	1	
2		Vendor ID[3:0]		R	0	Vendor Identification Code
1		venuor ib[3.0]		R	0	venuor identification code
0				R	0	

Table 35. Si52204 Control Register 6. Byte 6

Bit	Name	lf Bit = 0	If Bit = 1	Туре	Default	Function
7		•		R	0	
6				R	0	
5		R O				
4	Programming ID [7:0] R O Programming ID	Programming ID (Internal Only)				
3			0]	R	0	
2				R	0	
1				R	0	
0				R	0	

8.9.4. Si52202 Registers

Bit	Name	If Bit = 0	If Bit = 1	Туре	Default	Function
7		Rese	rved		0	Reserved
6	DIFF0_OE	Disabled	Enabled	RW	1	Output enable for DIFF_0
5		Rese	rved		0	Reserved
4		Rese	rved		0	Reserved
3		Rese	rved		0	Reserved
2		Rese	rved		0	Reserved
1		Rese	rved	0	Reserved	
0		Rese	rved		0	Reserved

Table 36. Si52202 Control Register 0. Byte 0

Table 37. Si52202 Control Register 1. Byte 1

Bit	Name	If Bit = 0	If Bit = 1	Туре	Default	Function
7		Reser	ved	0	Reserved	
6		Reser	ved		0	Reserved
5	DIFF1_OE	Disabled	Enabled	RW	1	Output enable for DIFF_1
4		Reser	ved	•	0	Reserved
3		Reser	vod		0	Reserved
2		Reser	veu		0	- Nesel veu
1	SS_EN_READ1			0	Spread Enable software readback 00 = – 0.25%; 01 = OFF; 10 = OFF; 11 = –0.5%	
0	SS_EN_READ0			0	The value of SS_EN_READ is latched on power-up.	

Table 38. Si52202 Control Register 2. Byte 2

Bit	Name	lf Bit = 0	If Bit = 1	Туре	Default	Function
7	SS_EN_SW_HW_CTRL	Read back Byte 1[1:0]	SS control by Byte 2 [6:5]	RW	0	Enable software control of spread
6	SS_EN_SW1			RW		Software control of spread
5	SS_EN_SW0			RW	1	00 = -0.25%; 01 = OFF; 10 = OFF; 11 = -0.5%
4		Reserved			0	Reserved
3		Reserved			0	Reserved
2		Reserved			0	Reserved
1	Reserved					Reserved
0	Reserved					Reserved

Bit	Name	If Bit = 0	If Bit = 1	Туре	Default	Function
7		Reserve	d		1	Reserved
6	SR_SEL_DIFF_0	Slow setting	Fast setting	1	Slew rate control for DIFF_2	
5		Reserve	d		1	Reserved
4		Reserve	d		1	Reserved
3		Reserve	d		1	Reserved
2		Reserve	d		1	Reserved
1		Reserve	d	1	Reserved	
0		Reserve	d		1	Reserved

Table 39. Si52202 Control Register 3. Byte 3

Table 40. Si52202 Control Register 4. Byte 4

Bit	Name	If Bit = 0	If Bit = 1	Туре	Default	Function
7		Reserved		1	Reserved	
6		Reserved			1	Reserved
5	SR_SEL_DIFF_1	Slow setting	Fast setting	RW	1	Slew rate control for DIFF_1
4		Reserved			1	Reserved
3	AMP			RW	1	DIFF Differential Outputs Amplitude Adjustment.
2	AMP			RW	0	0110 : 600 mV
1	AMP			RW	0	0111 : 650 mV 1000 : 700 mV
0	АМР			RW	0	1001 : 750 mV 1010 : 800 mV 1011 : 850 mV

Table 41. Si52202 Control Register 5. Byte 5

Bit	Name	lf Bit = 0	If Bit = 1	Туре	Default	Function
7				R	0	
6		Rev Code [7:4]		R	0	Revision Code
5		Nev Code [7.4]		R	0	Nevision code
4				R	0	
3				R	1	
2		Vendor ID[3:0]		R	0	Vendor Identification Code
1		Venuer ib[5.0]		R	0	venuor identification code
0				R	0	

Bit	Name	If Bit = 0	If Bit = 1	Туре	Default	Function
7				R	0	
6				R	0	
5				R	0	
4	D,	rogramming ID [7:	01	R	0	Programming ID (Internal Only)
3			0]	R	0	
2				R	0	
1				R	0	
0				R	0	

Table 42. Si52202 Control Register 6. Byte 6

9. Packaging

9.1. Si52212 Package

The figure below illustrates the package details for the Si52212 in a 64-Lead 9 x 9 mm QFN package. The table lists the values for the dimensions shown in the illustration.

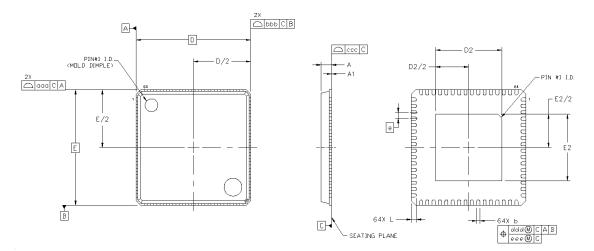


Figure 25. Si52212 Package Diagram

Table 43. Si52212 Package Dimensions

Dimension	Min	Nom	Max	Notes
A	0.80	0.85	0.90	
A1	0.00	0.02	0.05	
b	0.18	0.25	0.30	
D		9.00 BSC		
D2	5.10	5.20	5.30	All dimensions shown are in millimeters (mm) unless
e		0.50 BSC		otherwise noted.
E		9.00 BSC		Dimensioning and Tolerancing per ANSI Y14.5M-1994.
E2	5.10	5.20	5.30	This drawing conforms to JEDEC Outline MO-220.
L	0.30	0.40	0.50	Recommended card reflow profile is per JEDEC/IPC J-
ааа		0.15		STD-020D specification for Small Body Components.
bbb		0.10		
ссс		0.08		
ddd		0.10		
eee		0.05		

9.2. Si52212 Land Pattern

The following figure illustrates the land pattern details for the Si52212 in a 64-Lead 9 x 9 mm QFN package. The table lists the values for the dimensions shown in the illustration.

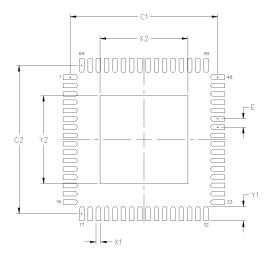


Figure 26. Si52212 Land Pattern

Table 44. Si52212 PCB Land Pattern Dimensions

Dimension	mm
C1	8.90
C2	8.90
E	0.50
X1	0.30
Y1	0.85
X2	5.30
Y2	5.30
Notes	

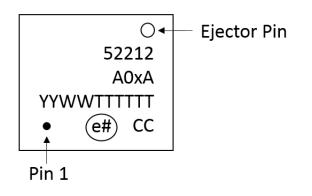
General

All dimensions shown are in millimeters (mm). This Land Pattern Design is based on the IPC-7351 guidelines.

All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a fabrication allowance of 0.05 mm.

Solder Mask Design

All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 mm minimum, all the way around the pad.


Stencil Design

A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. The stencil thickness should be 0.125 mm (5 mils).

The ratio of stencil aperture to land pad size should be 1:1 for all pads. A 3x3 array of 1.25 mm square openings on a 1.80 mm pitch should be used for the center ground pad.

Card Assembly

9.3. Si52212 Top Markings

Figure 27. Si52212 Top Marking

Table 45. Si52212 Top Marking Explanation

Line	Characters	Description
1	52212	Device part number
2	A0xA	Device part number x = 1 = Internal 100 Ω impedance matching x = 2 = Internal 85 Ω impedance matching
3	YYWWTTTTTT	YY = Assembly year WW = Assembly work week TTTTTT = Manufacturing trace code
4	e# CC	e# = Lead finish symbol. # is a number CC = Country of origin (ISO abbreviation)

9.4. Si52208 Package

The figure below illustrates the package details for the Si52208 in a 48-Lead 6 x 6 mm QFN package. The table lists the values for the dimensions shown in the illustration.

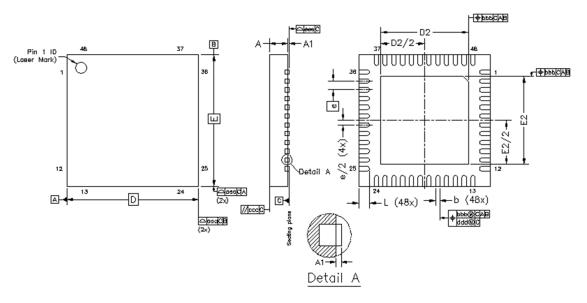


Figure 28. Si52208 Package Diagram

Dimension	Min	Nom	Max	Notes
А	0.80	0.85	0.90	
A1	0.00	0.02	0.05	
b	0.15	0.20	0.25	
D		6.00 BSC		
D2	3.5	3.6	3.7	All dimensions shown are in millimeters (mm) unless otherwise noted.
е		0.40 BSC		otherwise noted.
E		6.00 BSC		Dimensioning and Tolerancing per ANSI Y14.5M-1994.
E2	3.5	3.6	3.7	This drawing conforms to JEDEC Outline MO-220.
L	0.30	0.40	0.50	Decommended card reflew profile is per IEDEC/IDC I
ааа	0.10			— Recommended card reflow profile is per JEDEC/IPC J- STD-020 specification for Small Body Components.
bbb	0.10			
CCC	0.10			
ddd	0.05			
eee	0.08			

9.5. Si52208 Land Pattern

The figure below illustrates the land pattern details for the Si52208 in a 48-Lead, 6 x 6 mm QFN package. The table lists the values for the dimensions shown in the illustration.

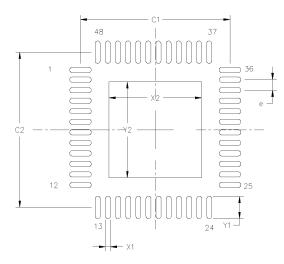


Figure 29. Si52208 Land Pattern

Table 47. Si52208 PCB Land Pattern Dimensions

Dimension	mm
C1	5.90
C2	5.90
X1	0.20
X2	3.60
Y1	0.85
Y2	3.60
е	0.40 BSC
Notes	

General

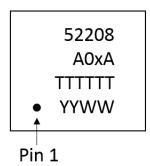
All dimensions shown are in millimeters (mm) unless otherwise noted.

Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification. This Land Pattern Design is based on IPC-7351 guidelines.

All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm.

Solder Mask Design

All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 mm minimum, all the way around the pad.


Stencil Design

A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.

The stencil thickness should be 0.125 mm (5 mils). The ratio of stencil aperture to land pad size should be 1:1 for the perimeter pads. A 3x3 array of 0.90 mm square openings on 1.15mm pitch should be used for the center ground pad.

Card Assembly

9.6. Si52208 Top Markings

Figure 30. Si52208 Top Marking

Table 48. Si52208 Top Marking Explanation

Line	Characters	Description
1	52208	Device part number
2		Device part number x = 1 = Internal 100 Ω impedance matching x = 2 = Internal 85 Ω impedance matching
3	ттттт	TTTTTT = Manufacturing trace code
4	YYWW	YY = Assembly year WW = Assembly work week

9.7. Si52204 Package

The figure below illustrates the package details for the Si52204 in a 32-Lead, 5 x 5 mm QFN package. The table lists the values for the dimensions shown in the illustration.

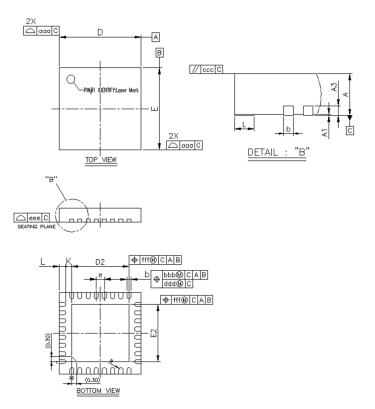


Figure 31. Si52204 Package Diagram

Table 49. Si52	204 Package	Dimensions
----------------	-------------	------------

Dimension	Min	Nom	Мах	Notes
A	0.80	0.85	0.90	
A1	0.00	0.02	0.05	
A3		0.20 REF		
b	0.18	0.25	0.30	
D/E	4.90	5.00	5.10	All dimensions shown are in millimeters (mm) unless
D2/E2	3.40	3.50	3.60	otherwise noted.
E		0.50 BSC		Dimensioning and Tolerancing per ANSI Y14.5M-1994.
К	0.20	—	—	Dimensioning and tolerancing per ANSI 114.5W-1994.
L	0.30	0.40	0.50	This drawing conforms to the JEDEC Solid State Outline MO-220, Variation VKKD-4.
R	0.09	_	0.14	
ааа		0.15		Recommended card reflow profile is per JEDEC/IPC J- STD-020 specification for Small Body Components.
bbb	0.10			
ссс	0.10			
ddd	0.05			
eee	0.08			
fff		0.10		

9.8. Si52204 Land Pattern

The figure below illustrates the land pattern details for the Si52204 in a 32-Lead, 5 x 5 mm QFN package. The table lists the values for the dimensions shown in the illustration.

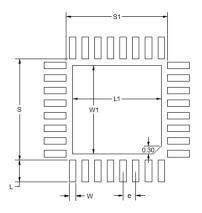


Figure 32. Si52204 Land Pattern

Table 50. Si52204 PCB Land Pattern Dimensions

Dimension	mm
S1	4.01
S	4.01
L1	3.50
W1	3.50
е	0.50
W	0.26
L	0.86
Notes	

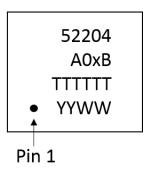
General

All dimensions shown are in millimeters (mm) unless otherwise noted. This Land Pattern Design is based on IPC-7351 guidelines.

Solder Mask Design

All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 mm minimum, all the way around the pad.

Stencil Design


A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. The stencil thickness should be 0.125mm (5 mils).

The ratio of stencil aperture to land pad size can be 1:1 for all perimeter pads.

A 3x3 array of 0.85 mm square openings on 1.00 mm pitch can be used for the center ground pad.

Card Assembly

9.9. Si52204 Top Markings

Figure 33. Si52204 Top Marking

Table 51. Si52204 Top Marking Explanation

Line	Characters	Description
1	52204	Device part number
2	A0xB	Device part number x = 1 = Internal 100 Ω impedance matching x = 2 = Internal 85 Ω impedance matching
3	ТТТТТТ	TTTTTT = Manufacturing trace code
4		YY = Assembly year WW = Assembly work week

9.10. Si52202 Package

The figure below illustrates the package details for the Si52202 in a 20-Lead, 3 x 3 mm QFN package. The table lists the values for the dimensions shown in the illustration.

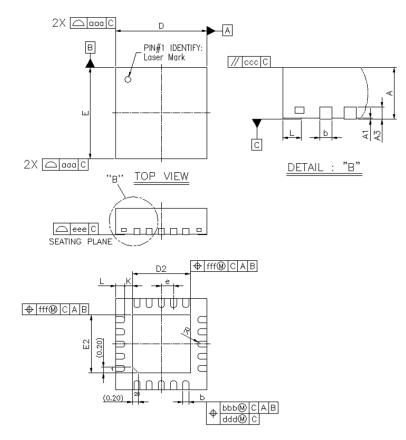


Figure 34. Si52202 Package Diagram

Dimension	Min	Nom	Max	Notes
A	0.80	0.85	0.90	
A1	0.00	0.02	0.05	
A3	-	0.65	—	
A3		0.20 REF		
b	0.15	0.20	0.25	
D		3.00 BSC		
D2	1.8	1.9	2.0	All dimensions shown are in millimeters (mm) unless
E		3.00 BSC		otherwise noted.
E2	1.8	1.9	2.0	Dimensioning and Tolerancing per ANSI Y14.5M-1994.
е		0.40 BSC		
К	0.20	—	_	The drawing complies with JEDEC MO-220.
L	0.20	0.30	0.40	Recommended card reflow profile is per the JEDEC/IPC J-
R	0.075	—	0.125	STD-020 specification for Small Body Components.
ааа		0.10		
bbb		0.07		
ССС		0.10		
ddd		0.05		
eee		0.08		
fff		0.10		

Table 52. Si52202 Package Dimensions

9.11. Si52202 Land Pattern

The figure below illustrates the land pattern details for the Si52202 in a 20-Lead, 3 x 3 mm QFN package. The table lists the values for the dimensions shown in the illustration.

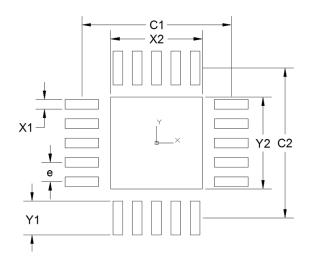


Figure 35. Si52202 Land Pattern

Table 53. Si52202 PCB Land Pattern Dimensions

Dimension	mm
C1	3.10
C2	3.10
X1	0.20
Х2	1.90
Y1	0.70
Y2	1.90
е	0.40 BSC
Notes	

General

All dimensions shown are in millimeters (mm) unless otherwise noted.

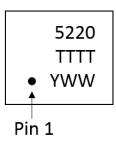
Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification. This Land Pattern Design is based on IPC-7351 guidelines.

All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm.

Solder Mask Design

All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.

Stencil Design


A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.

The stencil thickness should be 0.125 mm (5 mils). The ratio of stencil aperture to land pad size should be 1:1 for the perimeter pads.

A 3x3 array of 0.90 mm square openings on 1.15 mm pitch should be used for the center ground pad.

Card Assembly

9.12. Si52202 Top Markings

Figure 36. Si52202 Top Marking

Table 54. Si52202 Top Marking Explanation

Line	Characters	Description
1	5220	Device part number
2	TTTT TTTT TTTT TTTT TTTTTTTTTTTTTTTTTT	
3	YWW	Y = Assembly year WW = Assembly work week

10. Ordering Information

Number of Outputs	Internal Termination	Part Number	Package Type	Temperature
12-output	100 Ω	Si52212-A01AGM	64-QFN	Extended, –40 to 85 °C
		Si52212-A01AGMR	64-QFN - Tape and Reel	Extended, –40 to 85 °C
	85 Ω	Si52212-A02AGM	64-QFN	Extended, –40 to 85 °C
		Si52212-A02AGMR	64-QFN - Tape and Reel	Extended, –40 to 85 °C
8-output	100 Ω	Si52208-A01AGM	48-QFN	Extended, –40 to 85 °C
		Si52208-A01AGMR	48-QFN - Tape and Reel	Extended, –40 to 85 °C
	85 Ω	Si52208-A02AGM	48-QFN	Extended, -40 to 85 °C
		Si52208-A02AGMR	48-QFN - Tape and Reel	Extended, -40 to 85 °C
4-output	100 Ω	Si52204-A01BGM	32-QFN	Extended, -40 to 85 °C
		Si52204-A01BGMR	32-QFN - Tape and Reel	Extended, -40 to 85 °C
	85 Ω	Si52204-A02BGM	32-QFN	Extended, -40 to 85 °C
		Si52204-A02BGMR	32-QFN - Tape and Reel	Extended, -40 to 85 °C
2-output	100 Ω -	Si52202-A01BGM	20-QFN	Extended, –40 to 85 °C
		Si52202-A01BGMR	20-QFN - Tape and Reel	Extended, –40 to 85 °C
	85 Ω	Si52202-A02BGM	20-QFN	Extended, –40 to 85 °C
		Si52202-A02BGMR	20-QFN - Tape and Reel	Extended, –40 to 85 °C

Table 55. Si522x Ordering Guide

10.1. Technical Support

Table 56. Technical Support URLs

PCIe Clock Jitter Tool	https://www.skyworksinc.com/en/Products/Timing	
PCIe Learning Center	PCIe Learning Center https://www.skyworksinc.com/en/application-pages/pci-express-learning-center	
Development Kit https://www.skyworksinc.com/en/products/timing/evaluation-kits/clock/si52204-evaluation-kit		

11. Revision History

Revision	Date	Description
А	May, 2023	 Based on Revision 1.0 (March, 2019). Reformatted to new standards. Added PCIe Gen 6 support. Updated Table 8, PCIe and Intel QPI Jitter Specifications.

Copyright © 2023, Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks' Terms and Conditions of Sale.

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COM-PLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIM-ITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of Skyworks' published specifications or parameters.

Skyworks, the Skyworks symbol, Sky5[®], SkyOne[®], SkyBlue[™], Skyworks Green[™], ClockBuilder[®], DSPLL[®], ISOmodem[®], ProSLIC[®], SiPHY[®], and RFelC[®] are trademarks or registered trademarks of Skyworks Solutions, Inc. or its subsidiaries in the United States and other countries. Third-party brands and names are for identification purposes only and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.