

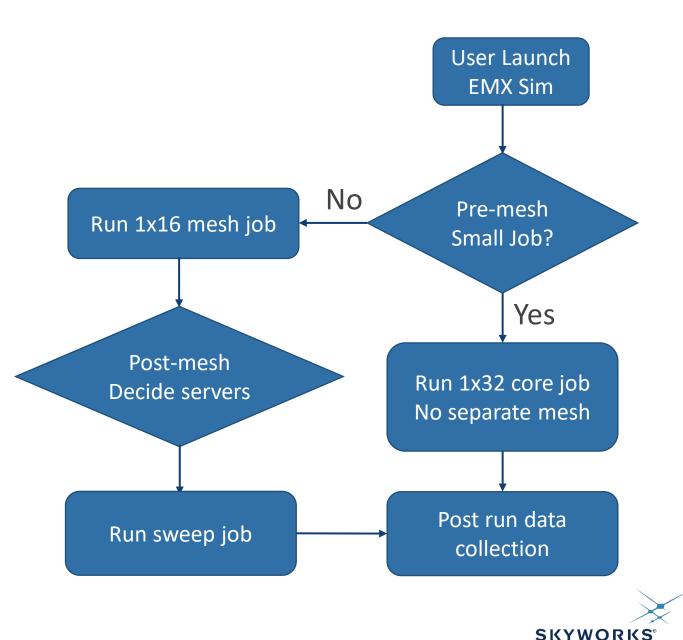
Optimize EMX Resource Usage with Machine Learning Bin Wan

Skyworks Solutions, Inc.

Connecting Everyone and Everything, All the Time.

Overview

- EMX is easy to use, fast and accurate planar 3D EM solver
 - Skyworks internal GUI and design flow from Virtuoso layout editor
- Finding the right computing resource for EMX is a big challenge
 - Skyworks use LSF to manage computing resources
- Questions to answer before EMX actually runs:
 - Separate mesh job?
 - How many servers/cores to use?
 - How much memory per server?
 - What is the estimated run time?
- Machine learning algorithm that runs before each job starts to determine best resource allocation


Data Collection

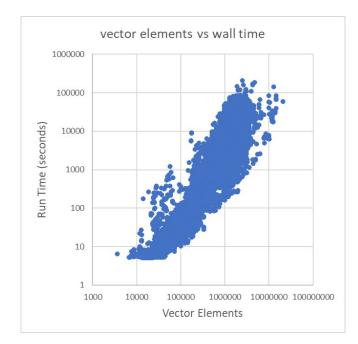
- Meta data used to filter sample points
 - PDK/project/library/cell/username
- Simulation setup
 - Number of ports
 - Number of frequency sweep points, maximum frequency
 - Important options, like --double-precision
- Pre-mesh geometry
 - GDS file size, # of shapes from GDS stream out log file
- Post-mesh geometry
 - Basis functions, vector elements, scalar elements
- Simulation finished results
 - Run time
 - Peak memory
 - LSF server statistics
 - CPU efficiency
 - Memory efficiency (Peak memory used / Max memory available)

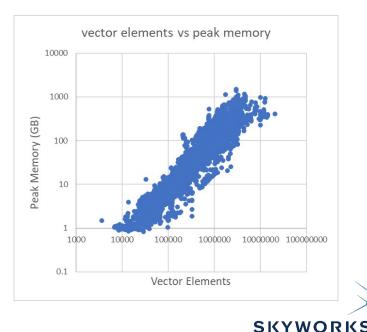
EMX Simulation Flow

- Each EMX simulation can have up to 2 decisions, pre-mesh and post-mesh
- Pre-mesh decision will decide if the simulation should have separate meshing job, or just run combined mesh and sweep
- Post-mesh decision uses meshed results to determine sweep server configuration

Pre-mesh Decision

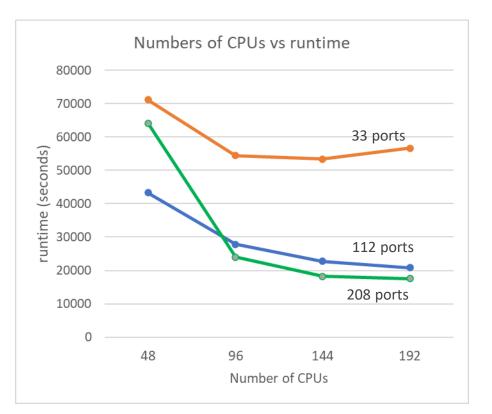
- Since EMX 2023.1, EMX can split simulation into meshing and frequency sweep
 - EMX can save mesh to a file and load an existing mesh
- Meshing tends to be very quick, and only runs on a few cores
 - Use server with best single core performance: order[cpuf]
- Pre-mesh algorithm is used to determine if the current job is big enough to have a separate mesh job
 - Use meta data, simulation setup, and GDS geometry to make an estimation on run time and memory usage
 - A small job does not benefit from a separate meshing process
 - Example: < 15 minutes estimated run time, < 200GB peak memory, AND < 32 ports
- If the job is determine to be small, run EMX with mesh and sweep combined, with 32 cores (1 base license)
- If the job is not small, submit EMX job with meshing only, to the fastest CPU server
 - --save-mesh=emx.mesh --stop-after=mesh



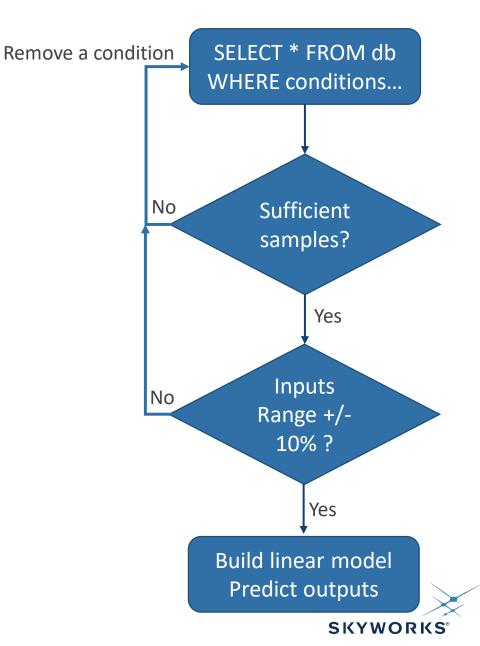

Post-mesh Decision

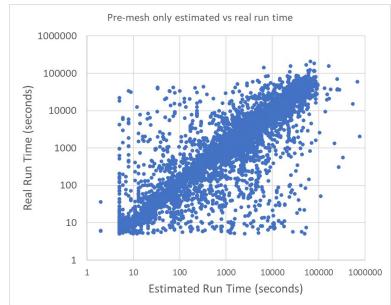
 Meshing elements can be extracted from EMX log file after meshing

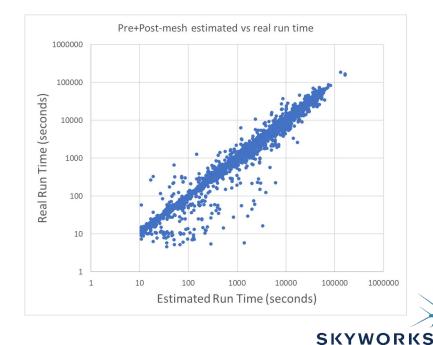
> Creating mesh... 20841 basis functions 23682 vector potential elements 16714 scalar potential elements


- Based Skyworks' experience, vector elements have the best correlation to run time and peak memory usage
 - Data filtering is still needed for best prediction
- Decide how many servers and cores per servers
 - Based on estimated CPU efficiency, peak memory ratio and server availability
- Launch EMX frequency sweep job
 - --load-mesh=emx.mesh

Optimizing CPU Usage


- Since EMX v6.1, EMX has the capability to run multiple servers with MPI
 - The primary server in MPI configuration is more heavily used than other servers
 - Prioritize single server over multiple servers
 - Based on Skyworks' observation, > 2 servers do not have good resource/performance trade off
- Look at CPU efficiency and memory efficiency from previous runs to decide how many servers/CPUs to use
 - CPU efficiency > 70% allocate more servers if possible
 - CPU efficiency < 20% do not allocate more servers
 - Some ports take much longer to solve than others
 - Reduce servers if under server shortage
 - Memory efficiency > 80% job can use more memory
 - Allocated cores cannot be used if insufficient memory


Prediction Algorithm


- Metadata filtering
 - Username, cell name, library name, project name, PDK
 - Filtered sample points greatly improves prediction accuracy
- Inputs
 - Number of ports, GDS size, mesh elements
 - Inputs needs to be +/- 10% from existing range
- Predicted outputs
 - Run time
 - Memory usage
 - Memory efficiency
 - CPU efficiency

Estimated Run Time

- Estimated run time can be fairly accurate with post mesh prediction
- Estimated run time can be used at LSF level to schedule jobs
 - bsub -We to pass estimated run time to LSF
 - Preempt jobs with longest remaining time
 - Delay start time for overnight jobs

Implementation

- Pre-mesh and post-mesh algorithms coded in python, as web API
 - sklearn module used for linear regression model
- EMX setup GUI coded in python
 - Pre-mesh decision executed right after user clicks on run button
 - If separate meshing is decided, post-mesh python script is called after meshing to evaluate and launch sweep job
- MariaDB used to store EMX data collections
- LSF used for job management. Data collection done in LSF post execution trigger
- OpenMPI that came with EMX installation is used for multi-server jobs

Additional Considerations

- Unknown port count for native EMX blackbox flow
 - Blackboxed designs should always mesh in a separate job
- --double-precision argument will double memory usage
 - Default is on in EMX 2023.2
- Avoid sharing servers that run EMX job with another job
 - By default, EMX will use up to the larger of: 80% of the total memory, or the total memory minus 8 gigabytes
- EMX works best with physical cores, not hyperthreaded cores
- CPU factor can affect estimated run time
- EMX "recommended memory" message shows up too late and usually over-estimates
- Using all cores on one server may not be the best strategy
 - If memory efficiency is very high and CPU efficiency is very low, reduce cores per server (--parallel option) to save on HPC license

Summary

- Data collection
 - Meta data
 - Simulation setup
 - Pre-mesh and post-mesh geometries
 - Run performance
- Pre-mesh and post-mesh decisions
 - Pre-mesh decision determines if job is short and combines mesh and sweep together
 - Post-mesh decision sets sweep cores/servers based on CPU efficiency and memory efficiency
 - Filtering by metadata greatly improves prediction accuracy
- Estimated run time can be used to manage jobs with LSF

