Effect of Permittivity and Permeability of a Flexible Magnetic Composite Material on the Performance and Miniaturization Capability of Planar Antennas for RFID and Wearable Wireless Applications

Lara J. Martin, Member, IEEE, Soodiam Ooi, Senior Member, IEEE, Daniela Staiculescu, Member, IEEE, Michael D. Hill, C. P. Wong, Fellow, IEEE, and Manos M. Tentzeris, Senior Member, IEEE

Abstract—This paper is an investigation of the feasibility of applying a mechanically flexible magnetic composite material to radio frequency identification (RFID) planar antennas operating in the lower ultrahigh-frequency (UHF) spectrum (300–500 MHz). A key challenge is that the magnetic loss introduced by the magnetic composite must be sufficiently low for successful application at the targeted operating frequency. A flexible magnetic composite comprised of particles of Z-phase Co hexaferrite, also known as Co2Z, in a silicone matrix was developed. To the authors’ knowledge, this is the first flexible magnetic composite demonstrated to work at these frequencies. The benchmarking structure was a quarter-wavelength microstrip patch antenna. Antennas on the developed magnetic composite and pure silicone substrates were electromagnetically modeled in Ansoft High-Frequency Sounder System full wave electromagnetic software. A prototype of the antenna on the magnetic composite was fabricated, and good agreement between the simulated and measured results was found. Comparison of the antennas on the magnetic composite versus the pure silicone substrate showed miniaturization capability of 2.4× and performance differences of increased bandwidth and reduced gain, both of which were attributed in part to the increase in the dielectric and magnetic losses. A key finding of this paper is that a small amount of permeability (µr ~ 2.5) can provide a substantial capability for miniaturization, while sufficiently low-magnetic loss can be introduced for successful application at the targeted operating frequency. This magnetic composite shows the capability to fulfill this balance and to be a feasible option for RFID.

Index Terms—Flexible structures, identification, magnetic materials, passive circuits, ultrahigh-frequency antennas.

I. INTRODUCTION

RADIO FREQUENCY identification (RFID) has enabled contactless transfer of information without the requirement of line of sight association, specifically between a reader and transponders that reside on an identified item. As the technology for RFID systems has developed, there has been a need to design more flexible systems enabled at the transponder, specifically the miniaturization of the transponder as well as ability to adjust the transponder mechanical form factor, adjust the read range, and tune system performance to accommodate electromagnetic (EM) absorption and interference from surrounding media [1] and [2]. 3-D transponder antennas that utilize wound coil inductors do make use of magnetic cores, but magnetic materials for 2-D embedded planar antennas have not yet been successfully realized for standard use. As their 3-D counterparts, 2-D embedded antennas can reap the same benefits from magnetic materials.

In many previous embedded inductor and antenna studies, it has been cited that the simultaneous objectives of miniaturization and improved performance are limited by the availability of materials that possess the required properties [3]–[5]. Studies on magnetic materials that may provide effective solutions and are compatible with currently established processing techniques and design requirements are needed for such materials to find their way into standard RFID antenna designs.

The capability for achieving miniaturization is demonstrated by the equation for the length of a quarter-wavelength microstrip antenna. The length of the quarter-wavelength microstrip antenna is \(\frac{\lambda}{4} \) as shown by (1) [6]

\[
\frac{\lambda}{4} = \frac{c}{4f\sqrt{\mu\varepsilon}}
\]
where λ is wavelength, c is speed of light, f_r is resonant frequency, μ_r is effective permeability, and ε_r is effective permittivity. From (1), increasing permeability by the addition of a magnetic material to a quarter-wavelength microstrip antenna decreases the required length for resonance, enabling miniaturization. Further, the use of a magnetic material has been shown to increase the bandwidth and decrease the circuit Q as defined in (2) by the addition of some magnetic loss. However, only a limited increase in the magnetic loss can be tolerated for achieving successful microstrip designs [7]–[9]

$$Q = \frac{\text{BW}}{10 \text{ dB bandwidth}}$$

Only limited work has been done to use magnetic materials in microstrip antennas to achieve these benefits [6]–[10]. For microstrip antenna designs, increasing bandwidth and miniaturization are interdependent results that can work together for improved performance.

In this paper, the benchmark structure is a quarter-wavelength microstrip patch antenna in the lower ultrahigh-frequency (UHF) band (\sim300–500 MHz) on both a flexible magnetic composite substrate and a pure silicone substrate. First, a flexible magnetic composite comprised of Z-phase Co hexaferrite, also known as Co2Z, in a silicone matrix was developed and fabricated as a substrate for the antenna structure. Next, the material properties for the developed magnetic composite and the pure silicone substrates were determined. Then, EM simulation was applied to design two-microstrip patch antennas with identical operating frequencies, substrate thicknesses, and patch size: ground size ratios in order to compare the effects of the substrates. A prototype of the patch antenna on the flexible magnetic composite substrate was fabricated using standard printed circuit board processing techniques. Then, the simulated and measured results for the S_11 parameter and 2-D radiation were obtained for determining the following antenna figures of merit: resonant frequency (f_r), return loss (RL), the -10 dB bandwidth (-10 dB BW), the 2-D radiation patterns at $\Phi = 0^\circ$ and 90°, maximum gain, and circuit Q as defined by (2).

These figures of merit were compared and the capability for miniaturization was determined. The aim of this paper is to assess the difference in the antenna performance and miniaturization capability attributable to the developed flexible magnetic composite as well as the feasibility of applying the developed material to the lower UHF spectrum (\sim300–500 MHz). To the authors' knowledge, this is the first flexible magnetic composite demonstrated to work at these frequencies.

II. MATERIAL DEVELOPMENT

First, particles of Z-phase cobalt hexaferrite, also known as Co2Z, were formulated. Co2Z is a hexagonal ferrite, and the size distribution utilized in this paper was 45–150 μm. Then, a magnetic composite comprised of Co2Z particles in a matrix of Dow Corning Sylgard 184 silicone was synthesized. Both the pure silicone and the developed magnetic composite were used as substrates for an antenna structure, in order to compare antenna performance and determine the capability for miniaturization.

The Co2Z particles were synthesized by blending oxides and carbonates of the stoichiometric composition (Ba$_3$Co$_2$Fe$_{24}$O$_{41}$) and heat treating in the range of 1150–1300 °C to bring about the solid state reaction which forms single-phase Co2Z material. Following the solid state reaction of the powder, the material was granulated, sintered above 1200 °C, and crushed to achieve the desired particle size. The magnetic composite was formulated by mixing 40 vol% ferrite particles in the uncured silicone to form a wet powder. To fabricate the substrate, the wet powder was transferred to a premade flat mold, constructed of 36-mm thick Cu foil sheet adhered with pure silicone to a bare 305 mm × 457 mm FR-4 laminate panel with a cutout in shape of the targeted substrate dimensions. Another 36-mm thick Cu foil sheet was then placed on top and more pure silicone was applied to the panel edges for adhesion. The final panel was then placed in a printed circuit board press and processed at 121 °C for 80 min. The silicone substrate was fabricated using the identical steps with the exception of using pure uncured silicone in the premade flat mold. Once the substrates were fabricated, a prototype antenna was made on the magnetic composite by standard double-sided printed circuit board processing techniques, which included drilling through-holes, plating the through-holes, patterning the copper, and routing to remove the resulting antenna from the panel.

The crystal structure of the Co2Z particles was investigated by X-ray diffraction (XRD). The XRD was performed with a Philips 1830 XRD system with the PW3710 multipurpose diffractometer controller using Cu Ka ($\lambda = 0.1540562$ nm) radiation. Samples were prepared as powder with no attempt made to preferentially align the sample to obtain enhanced (0 0 l) reflections. The XRD pattern of the Co2Z particles is shown in Fig. 1. All of the peaks in the pattern can be indexed to the Z-phase with no trace of the hexagonal M (BaFe$_2$O$_3$) or Y (Ba$_2$Co$_3$Fe$_7$O$_{12}$) phases present. M and Y phases form at lower temperatures and may leave a residue at the processing temperature if the blending is poor or the stoichiometry incorrect. If the conversion process is not taken to completion, small quantities of these earlier reactant phases can remain as impurities in the targeted final phase [11] and [12]. The X-ray pattern indicates that the conversion process to the Z-phase is complete to the resolution of the X-ray diffraction (between 1 and 2 volume percent). Single-phase material is important to minimize dielectric and magnetic loss as well as to obtain a stable dielectric constant and permeability over the targeted operating frequency range. The material properties of the resulting magnetic composite silicone substrates were obtained to investigate the applicability to the targeted operating frequency, i.e., in the lower UHF band (\sim300–500 MHz) and determine inputs for antenna design via EM simulation. The materials were measured using an HP4291A impedance analyzer to obtain complex permittivity (ε^*) and permeability (μ^*) (real and imaginary parts) with material fixtures 16453A for ε^* and 16454A for μ^* over the frequency range of 1 MHz to 1.8 GHz. There were five measurements taken for each ε_r, μ_r, tan δ_e, and tan δ_m to ensure repeatability.

Measuring the pure silicone substrate, it was determined that the material properties specified by the manufacturer
and shown in Table I were reasonable to use over the targeted operating frequencies. For the magnetic composite, the dispersive properties ε_r, μ_r, $\tan \delta_{\varepsilon}$, and $\tan \delta_{\mu}$ as a function of frequency were applied due to their variations over the targeted operating frequency range, particularly near the upper limit of their applicability at ~ 400–500 MHz. The values of ε_r, μ_r, $\tan \delta_{\varepsilon}$, and $\tan \delta_{\mu}$ obtained in single measurements shown in Figs. 2 and 3. The form of the final material properties used was an 11-point moving average of the values shown in Figs. 2 and 3 in order to remove measurement artifacts and produce smoothed data, for better handling by EM simulation packages.

III. Antenna Design and Measurement

The analyzed structure was a quarter-wavelength microstrip patch antenna in the lower UHF band (~ 300–500 MHz). The approach was to apply the previously determined material properties ε_r, μ_r, $\tan \delta_{\varepsilon}$, and $\tan \delta_{\mu}$, and compare the patch antennas on the pure silicone versus the magnetic composite substrate. Table II shows the initial design rules for the patch antennas, including targeted operating frequency, substrate thickness (h), and the ratio of patch size to ground size.

For designing the analyzed antenna structures, Ansoft High-Frequency Sounder System (HFSS) version 11.0.1 simulation package, a full wave, finite element method EM solver, was applied. The material properties ε_r, μ_r, $\tan \delta_{\varepsilon}$, and $\tan \delta_{\mu}$ for the magnetic composite were inputted into the simulation as a function of frequency. The design methodology included first developing an isolated microstrip model on the substrate and then determining the microstrip width (w) that gave characteristic impedance (Z_0) of 50 Ω. Then, the patch size was adjusted to tune to the targeted operating frequency. Finally, inset (d) was adjusted to minimize return loss (RL).

The patch antenna designs resulting from the EM simulations for the pure silicone and the magnetic composite substrate are shown in Figs. 4 and 5, respectively. The patch antenna design on the pure silicone substrate includes a microstrip feed to a 115.6 mm square patch over a 425 mm square ground and a path to short the patch to ground along the feed side. The patch antenna design on the magnetic composite substrate includes a microstrip feed to a 49 mm square patch over a 180 mm square ground and a path to short the patch to ground along the feed side. The patch on the magnetic composite is smaller (miniaturized) compared to the patch on pure silicone in order to achieve the common targeted operating frequency of 386 MHz. A prototype of the resulting patch antenna design for the magnetic composite was built and is shown in Fig. 6. For the prototype, the shorting of the patch to ground along the feed side was realized with through-holes having 0.508 mm diameter and a 2.032 mm pitch along the feed side.

The performance figures of merit for the patch antennas were f_c, RL, the -10 dB BW, the 2-D radiation patterns at $\phi = 0^\circ$ and 90°, the maximum gain, and the Q as defined in (2). For the radiation patterns, ϕ is defined as the angle...
Fig. 4. Dimensions of patch antenna design on pure silicone substrate (not drawn to scale).

Fig. 5. Dimensions of patch antenna design on magnetic composite substrate (not drawn to scale).

Fig. 6. Photograph of patch antenna prototype on magnetic composite substrate.

Fig. 7. S_{11} versus frequency for patch antennas on magnetic composite as measured, magnetic composite as simulated, and pure silicone as simulated.

IV. Antenna Results and Discussion

The S_{11} parameters obtained for the patch antenna on the magnetic composite as measured and simulated and the pure silicone as simulated are shown in Fig. 7. The 2-D radiation patterns and the adjusted gain at $\phi = 0^\circ$ and 90° for the patch antenna as simulated on pure silicone and as measured and simulated the magnetic composite are shown in Figs. 8 and 9, respectively. The radiation patterns were taken at the f_r determined by the S_{11} parameter for each of the corresponding antenna designs. The antenna performance for the measured magnetic composite antenna, the simulated magnetic composite antenna, and the simulated pure silicone antenna was determined for the figures of merit f_r, RL, $-10\,\text{dB}\,BW$, maximum gain, and circuit Q defined by (2). The summary of antenna performance for all cases is shown in Table III. It should be noted that the measured performance for the pure silicone patch antenna design was not obtained because the maximum required dimensions (i.e., 425 mm square ground, shown in Fig. 4) exceeded the allowable dimensions to prototype with the available fabrication process.

The results of the radiation patterns shown in Figs. 8 and 9 do show a discrepancy for $\phi = 90^\circ$ for the simulated antenna on the magnetic composite substrate. In this $\phi = 90^\circ$ measurement, a full back lobe at 180° is shown, whereas it does not exist for both the measured antenna on the magnetic composite substrate and the simulated antenna on the pure silicone substrate. This discrepancy was investigated by simulating the structure in another EM simulation package, Computer
The maximum gain results for the simulated and measured patch antenna on the magnetic composite substrate are in good agreement. The decrease in the maximum gain for the patch antenna on the magnetic composite substrate compared to the pure silicone substrate may be attributable to both the addition of magnetic loss as well as the decrease in the patch size. For these performance tradeoffs, the capability for miniaturization is demonstrated to be 2.4× (i.e., 425/180=2.4) for applying the developed magnetic composite.

The tradeoff of the antenna performance determined here for the capability of miniaturization can be useful in some applications. Applications that warrant miniaturization, increased bandwidth, and lower maximum gain do exist in or near the lower UHF spectrum. For example, indoor location technology and some other ad hoc networks require high-directivity for device-to-device isolation [13]. Other possible examples include wearable wireless health monitoring and pharmaceutical drug tracking applications that require small size, lightweight conformal antennas.

V. MATERIAL PROPERTIES SIMULATION STUDY

With the 2.4× miniaturization capability demonstrated for the patch antenna structure on the flexible magnetic composite substrate, the effects of material properties variation was investigated using a hybrid EM simulation and statistical tools methodology in addition to Monte Carlo simulation. The hybrid EM simulation and statistical tools methodology used to develop statistical models describing antenna performance as a function of the material properties is presented in Fig. 10. The experimental design chosen for the first-order statistical model was a full factorial design of experiment (DOE) with center points [14]. The 2^k factorial design is the simplest one, with k factors at 2 levels each. It provides the smallest number of runs for studying k factors and is widely used in factor screening experiments [14]. Center points are defined at the center of the design space and increase the curvature in the response, while accounting for variation inherent in obtaining the true values of both the factors and responses. As further described by Fig. 10, if the ultimate lack of fit is determined for the models, the analysis is extended to develop second-order models. Developing second-order models requires addition of axial points for response surface methodology (RSM), which can account for the curvature [15].

The second-order models can be reasonable approximations of the true functional relationship over relatively small ranges. Factorial designs have been used in experiments involving several factors where the goal is the study of the joint effects of the factors on a response or responses [16]. To perform the
output variables, or the experimental responses, were performed to determine whether the simulated antenna performance was capable of measuring the material properties. The Monte Carlo simulation and analyses, Crystal Ball software was used [19].

Using the final statistical models, Monte Carlo simulation was applied to investigate the effects of material properties on the antenna performance variation. A total of 20,000 trials were performed on the assumed variation of the material properties in order to obtain the simulated variation of the antenna performance. Then, capability analysis was performed to determine whether the simulated antenna performance was capable of measuring the material properties.

Six Sigma capability is reached for processes that have both lower specification limit (LSL) and upper specification limit (USL) and achieve equal variance of the residuals. The assumption of independence was taken as valid, because the data was obtained deterministically from the EM simulation. Additionally, all statistical models describe, when the data is nonnormal. Finally, sensitivity analysis was performed to determine the relative contributions of variation due to the material properties to the variation in antenna performance.

Monte Carlo simulation has been used in experiments involving several factors where the goal is the study of the effects of the variation of the factors on the variation of a response or responses [18]. To perform the Monte Carlo simulation and analyses, Crystal Ball software was used [19].

To begin, the antenna figures of merit selected as the output variables, or the experimental responses, were \(f_x, R_L \) at 386 MHz, and maximum gain at 386 MHz. These figures of merit describe the capability of the antenna to operate at the targeted operating frequency of 386 MHz. Next, the material properties \(\varepsilon_r \) and \(\mu_r \) were selected as the input variables, or the experimental factors. These material properties were chosen for the simulated experiment because it was previously observed that \(\varepsilon_r \) and \(\mu_r \) of the Co\textsubscript{73}Z\textsubscript{27} ferrite could vary for different batches, and from experience gained in the work, it was observed that \(\varepsilon_r \) and \(\mu_r \) can significantly affect the antenna figures of merit. Because the nominal values at 386 MHz for \(\varepsilon_r \) and \(\mu_r \) are 3 and 6, respectively, the previous antenna design on the magnetic composite (Fig. 5) was slightly modified to resonate at the target operating frequency of 386 MHz. The only change in the antenna design was the decrease in the size of the square patch from 49 mm to 44.75 mm in order to accommodate the slight increase in the nominal material property values.

The DOE experimental design is described in Table IV. The ± 1.5% ranges were chosen to minimize the probability of extrapolating beyond the design space that the statistical models describe, when the ±1.0% tolerances for the material properties were applied for the Monte Carlo simulations. Since the statistical models were based on deterministic simulations, the variation of the center points was based on an assumed ±0.1% tolerance capability for measuring the material properties. For both the ±1.0% and ±0.1% tolerances, a 3σ process for \(\varepsilon_r \) and \(\mu_r \) was assumed to derive the standard deviations.

Because curvature was found in at least one of the responses, axial points were added to the DOE, thereby producing an RSM experimental design.

The final statistical models resulting from this methodology for \(f_x, R_L \) at 386 MHz, and maximum gain at 386 MHz are given by (3), (4), and (5), respectively. All three models were checked and validated for the assumptions of normality and equal variance of the residuals. The assumption of independence was taken as valid, because the data was obtained deterministically from the EM simulation. Additionally, all three models were confirmed with a new simulated condition of \(\varepsilon_r \) and \(\mu_r \) equal to 6.080 and 3.040, respectively, supporting that the models had sufficient capability of predicting.

\[
f_x = 385.73 - 2.734 \left(\frac{\varepsilon - 6}{0.09} \right) - 2.276 \left(\frac{\mu - 3}{0.045} \right) \tag{3}
\]

\[
R_L \text{ at } 386 \text{ MHz} = -25.672 + 0.7194 \left(\frac{\varepsilon - 6}{0.09} \right) + 0.1282 \left(\frac{\mu - 3}{0.045} \right) + 9.028 \left(\frac{\varepsilon - 6}{0.09} \right) \times \left(\frac{\mu - 3}{0.045} \right) + 6.969 \left(\frac{\varepsilon - 6}{0.09} \right) \times \left(\frac{\mu - 3}{0.045} \right)^2 + 5.878 \left(\frac{\mu - 3}{0.045} \right)^2 \tag{4}
\]

\[
\text{Max Gain at } 386 \text{ MHz} = -9.693 - 0.3444 \left(\frac{\varepsilon - 6}{0.09} \right) + 0.3892 \left(\frac{\varepsilon - 6}{0.09} \right)^{1/2} \tag{5}
\]
Using these final statistical models, Monte Carlo simulation consisting of 20,000 trials was run for ε_r and μ_r in order to obtain the distributions of the antenna performance figures of merit f_r, RL at 386 MHz, and maximum gain at 386 MHz. Capability analysis was performed on these results to determine whether f_r, RL at 386 MHz, and maximum gain at 386 MHz were capable of 6σ performance. The quantities for C_p, C_{pk}, and C_{npk} can be used to assess 6σ capability. Six Sigma capability is reached for processes that achieve $C_p > 2$ and $C_{pk} > 1.5$ for processes with USL and LSL, and C_{pk} or $C_{npk} > 1.5$ for processes with only USL or LSL, allowing in both cases the possibility of long-term ±1.5 sigma shift.

In other words, the designer knows at the beginning of the design process that, with 6σ performance, approximately 3.4 measurements out of 1,000,000 may occur beyond these specification limits (i.e., the USL and LSL). If the designer finds performance less than 6σ unacceptable, the whole system can be redesigned, again through simulation, without the need to build any test structures and go through an expensive, time-consuming process.
VI. EFFECT OF DIELECTRIC AND MAGNETIC LOSSES

The effect of dielectric and magnetic losses on antenna performance was investigated by comparing EM simulation results of the antenna designs assuming actual $\tan \delta_1$ and $\tan \delta_2$ values and these values set equal to zero. The first EM simulation was performed at the center point for the RSM, which was ε_r and μ_r equal to 6 and 3, respectively. For the original antenna design used in the material properties variation study. A poor RL was obtained and attributed to the change in characteristic impedance Z_0, which was no longer equal to 50 Ω and thereby caused reflection of the input power. A retuned design was achieved by adjusting only w and d equal to 1.0 mm and 1.4 mm, respectively, thereby not affecting the patch or overall antenna size. Then, a second EM simulation was performed with the retuned design assuming $\tan \delta_1$ and $\tan \delta_2$, both equal to zero. To investigate effect of the losses, the antenna figures of merit f_r, RL at 386 MHz, and maximum gain at 386 MHz were compared for the original design with no loss, the original design with actual loss, and the retuned design with no loss.

To compare f_r and RL at 386 MHz for these cases, the S_11 versus frequency is shown in Fig. 13. The dielectric and magnetic losses slightly affected f_r, with values of 385.9, 385.9, and 386.3 MHz for the patch antenna on magnetic composite assuming the original design with no loss, the original design with actual loss, and the retuned design with no loss, respectively. The loss did affect RL at 386 MHz, as the values of -0.8472, -26.4044, and -7.9137 for the patch antenna on magnetic composite assuming the original design with no loss, the original design with actual loss, and the retuned design with no loss, respectively, were substantially different. For the retuned design, only limited RL at 386 MHz was achieved, which was attributed to the slight change in f_r and the comparatively narrower BW.

The values of maximum gain at 386 MHz were considered for these cases as well as for the pure silicone case. The dielectric and magnetic losses were found to also affect maximum gain at 386 MHz, as observed when the values of 3.7, -9.7, 3.6, and 4.8 dBi were compared for the patch antenna on magnetic composite assuming the original design with no loss, the original design with actual loss, the retuned design with no loss, and the previous design on pure silicone shown in Fig. 4, respectively. It was noted that the values of maximum gain at 386 MHz that were obtained from the simulation did not include effects of the microstrip impedance matching. Considering the differences in the values for maximum gain at 386 MHz, the decrease in the maximum gain for the patch antenna on the magnetic composite substrate compared to the pure silicone substrate may be attributable to

<table>
<thead>
<tr>
<th>Process Information</th>
<th>f_r</th>
<th>RL at 386 MHz</th>
<th>Max Gain at 386 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>386 MHz</td>
<td>not applicable</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Control</td>
<td>386 MHz</td>
<td>not applicable</td>
<td>-10 dB</td>
</tr>
<tr>
<td>SPC</td>
<td>388 MHz</td>
<td>-0.1 dB</td>
<td>not applicable</td>
</tr>
<tr>
<td>C_{p_k}</td>
<td>0.84</td>
<td>not applicable</td>
<td>not applicable</td>
</tr>
<tr>
<td>C_{pk}</td>
<td>0.73</td>
<td>not applicable</td>
<td>-4.5 dB</td>
</tr>
<tr>
<td>C_{npk}</td>
<td>not applicable</td>
<td>3.74</td>
<td>3.88</td>
</tr>
</tbody>
</table>

Fig. 13. S_{11} versus frequency to investigate effect of dielectric and magnetic losses.

Authorized licensed use limited to: SKYWORKS SOLUTIONS. Downloaded on May 06, 2010 at 17:47:26 UTC from IEEE Xplore. Restrictions apply.
both the addition of the dielectric and magnetic losses as well as the decrease in the patch size.

VII. CONCLUSION

The capability of miniaturization by a factor of 2.4× was demonstrated for a patch antenna structure on a mechanically flexible magnetic composite substrate when compared to a pure silicone substrate. Differences in performance of the antennas included increased bandwidth and reduced gain, both of which were attributed in part to the increase in the dielectric and magnetic losses. These differences can be either beneficial or detrimental, depending on the design motivation, and, in effect, provide further flexibility in radio frequency (RF) system design. A key finding of this paper was that a small amount of permeability (μr~5) can provide relatively substantial capability for miniaturization, while sufficiently low-magnetic loss can be introduced for successful application at the targeted operating frequency. This magnetic composite shows the capability to fulfill this balance and to be a feasible option for RFID applications in the lower UHF spectrum (∼300-500MHz). Another key finding was that controlling the variation of εr provides a large opportunity for controlling variation of f0, RL at 386MHz, and maximum gain at 386MHz.

ACKNOWLEDGMENT

The authors would like to thank B. W. Treadway of TransTech in Adamstown, Maryland, and D. J. Meyer of Motorola in Plantation, Florida, for their support of this paper.

REFERENCES

Laura J. Martin (M’98) received the Bachelor degree in chemical engineering, the M.S. degree in materials science and engineering, and the Ph.D. degree in materials science and engineering with a minor in applied statistics, from the Georgia Institute of Technology, Atlanta, in 1995, 2000, and 2008, respectively. She has held her background in both engineering and statistics throughout her career at Motorola Plantation, Florida, where she currently works as a Master Black Belt for Motorola’s Enterprise Mobility Solutions. She achieved a Six Sigma Black Belt in 2001 and became the 17th Master Black Belt recognized at Motorola in 2003, for her application of statistical tools and methods. She has published 32 papers in several forums, including conference proceedings, peer-reviewed journals, and a cover story article for a trade magazine. She holds several U.S. and international patents. Dr. Martin was inducted as a Motorola Science Advisory Board Associate Member in 2003, representing the top 1.5% of the corporation’s technical resources. Additionally, she was elected to the Georgia Tech Council of Outstanding Young Engineering Alumni in 2004 and was awarded the IEEE Components, Packaging, and Manufacturing Technology Outstanding Young Engineer of the Year Award in 2005.
Daniela Stanciu(’97) received the B.S. degree in chemical engineering and the M.S. degree in materials science and engineering from Virginia Polytechnic Institute and State University, Blacksburg, in 1996 and 1998, respectively. She received the Ph.D. degree in materials science and engineering from the University of Maryland, College Park, in 1996.

From 1999 to 1996, she was a Ceramic Engineer with the National Institute of Standards and Technology, Gaithersburg, MD. She works on and has published papers on crystal chemistry of high Tc superconductors, and synthesis of lead-based Perovskites. She has been with the Department of Research and Development, Trans-Tech, Adamstown, MD, since 1996, where she works on new formulations for microwave dielectric and magnetic materials as well as specialty advanced materials, and helps develop several new formulations. Her research interests include crystal chemistry and ceramic processing of microwave dielectric and magnetic oxide materials, as well as crystal chemistry and processing of oxide materials for energy applications.

C. P. Wong (F’92) received the B.S. degree in chemical engineering from the University of Pittsburgh, West Lafayette, IN, and the Ph.D. degree in chemistry from Pennsylvania State University, University Park, PA, in 1971.

He is a Regents Professor and the Charles Smithgall Chair in the School of Materials Science and Engineering, Georgia Institute of Technology (GT), Atlanta. Prior to joining GT in 1996, he was with AT&T Bell Laboratories, Murray Hill, NJ, for many years, and became an AT&T Bell Laboratories Fellow in 1992. After his doctoral study, he was awarded a two-year postdoctoral fellowship with Nobel Laureate Professor Henry Taube, Stanford University, Stanford, CA. He holds over 50 U.S. patents, has published over 900 technical papers, and has co-authored and edited ten books. He is actively involved in international student exchange programs in highly integrated/multilayer packaging for radio frequency (RF) and wireless applications using ceramic and organic flexible materials, printed radio frequency identifications (RFID) and sensors, microwave MEMs, standard operating procedure-integrated multifunctional, multiform, conformal antennas and adaptive numerical electromagnetic (finite-difference time-domain, Multiresolution algorithms), and “green” RF electronics. He has given more than 50 invited talks in the same area to various universities and companies in Europe, Asia, and America.

De Tenta Nt received the Ph.D. degree in mechanical engineering from the National Technical University of Athens, Athens, Greece, in 1992, and the M.S. and Ph.D. degrees in electrical engineering and computer science from the University of Michigan, Ann Arbor, in 1994 and 1998, respectively.

Dr. Wong has received many awards, including the AT&T Bell Labs Fellow Award in 1992, the IEEE Components, Packaging, and Manufacturing Technology Society Outstanding Sustained Technical Contributions Award in 1995, the IEEE Third Millennium Medal in 2000, the IEEE Educational Technology Society Outstanding Sustained Technical Contributions Award in 2000, the IEEE Components, Packaging, and Manufacturing Technology Donald Feldman Award in 2009. He has been a Member of the National Academy of Engineering since 2000.

Manos M. Tentzeris (SM’02) received the Diploma degree in electrical and computer engineering from the National Technical University of Athens, Athens, Greece, in 1992, and the M.S. and Ph.D. degrees in electrical engineering and computer science from the University of Michigan, Ann Arbor, in 1994 and 1998, respectively.

He is currently a Professor with the School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta. He heads the Athena Group at the Georgia Institute of Technology, Atlanta. He leads the Athena Research Group, and he was a Visiting Professor with the Technical University of Munich, Munich, Germany, for the summer of 2002, where he introduced a course in the area of high-frequency packaging. He is in the Georgia Electronic Design Center Associate Director for RFID/Sensors research, and he has been the Georgia Tech National Science Foundation (NSF)-Packaging Research Center Associate Director for RF Research, and the RF Alliance Leader from 2005 to 2006. He has published more than 320 papers in refereed journals and conference proceedings, three books, and 17 book chapters. He has helped to develop academic programs in highly integrated/multilayer packaging for radio frequency (RF) and wireless applications using ceramic and organic flexible materials, printed radio frequency identifications (RFID) and sensors, microwave MEMs, standard operating procedure-integrated multifunctional, multiform, conformal antennas and adaptive numerical electromagnetic (finite-difference time-domain, Multiresolution algorithms), and “green” RF electronics. He has given more than 50 invited talks in the same area to various universities and companies in Europe, Asia, and America.

De Tenta Nt received the recipient and co-recipient of the 2007 IEEE Antennas and Propagation Society’s Young Author Student Paper Award, the 2007 IEEE International Microwave Symposium (IMS) Third Best Student Paper Award, the 2007 International Symposium on Antennas and Propagation Workshop, a Ph.D. Poster Presentation Award, the 2006 IEEE Microwave Theory and Techniques (M TT) Outstanding Young Engineer Award, the 2006 Asian-Pacific Microwave Conference Award, the 2004 IEEE Transactions on Advanced Packaging Commendable Paper Award, the National Aeronautics and Space Administration Goddard “Art” Axon Collaborative Distinguished Publication Award, the 2003 International Biographical Center International Educator of the Year Award, the 2003 IEEE Components, Packaging, and Manufacturing Technology Conference Best Paper Award, the 2002 International Symposium on Antennas and Propagation Conference Best Paper Award, the 2002 NSF CAREER Award, the 1997 Best Paper Award of the International Hybrid Microelectronics and Packaging Society. He was the Technical Program Committee Chair for the 2009 IEEE IMS 2008 Symposium, and the Chair of the 2005 IEEE Computational Electromagnetics in Time-Domain Workshop. He was the Vice-Chair of the RF Technical Committee (TC24) of the IEEE CPMT Society, the Founder and Chair of the RFID Technical Committee (TC24) of the IEEE MTT Society, and the Secretary/Treasurer of the IEEE RFID. He has organized various sessions and workshops on RF/Wireless Packaging and Integration, RFID, Numerical Techniques/Wavetics, in the IEEE Electronic Components and Technology Conference, IMS, Virtual Training Center, and APS Symposia in all of which he is a Member of the Technical Program Committee in the area of “Components and RF.” He is an Associate Editor of IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, IEEE TRANSACTIONS ON ADVANCED PACKAGING, and the International Journal on Antennas and Propagation. He is a Member of URSI-Commission D, a Member of the MTT-13 committee, an Associate Member of the European Microwave Association, a Fellow of the Electromagnetic Academy, and a Member of the Technical Chamber of Greece. He was the recipient of the 2009 E.T.S.Walton Award from the Irish Science Foundation and he will be the IEEE MTT-S Distinguished Microwave Lecturer from 2010-2012.