APPLICATION NOTE

The S²Cwire Serial Digital Interface in Real-Time Systems

Introduction

The Simple Serial Control single wire (S²Cwire™) and Advanced Simple Serial Control single wire (AS²Cwire™) interfaces are used to set parameters in many Skyworks products.

Parameters that can be programmed using the S²Cwire or AS²Cwire interfaces include setting current levels in LED driver I/Cs, programming battery characteristics in battery chargers, or controlling the on/off state of load switches in a multi-output load switch. A single microcontroller I/O port typically serves as the S²Cwire interface driver, as shown by the application circuit for the AATA3123 Fractional Charge Pump in Figure 1.

This Application Note describes a timing issue that must be considered when the S²Cwire or AS²Cwire interface is applied to real-time or human interface systems.

Application Problem

When a high priority interrupt occurs during S²Cwire data transfer, the transfer may be corrupted if the interrupt halts I/O activity during the logic low state for a period of time longer than tEN/SET_LO (75 μs).

Application Solution

The high-speed ability of the S²Cwire interface can be used, along with interrupt masking, to ensure proper operation of the interface. When operated at high speed, operation of the S²Cwire interface would not typically interfere with human interface operations. A high rate S²Cwire clock cycle lasts for no more than 350 ns. Applying this timing for setting the maximum LED brightness in the LED application requires only 31 x 350 ns, or 10.85 μs.

If interrupts are masked for this period of time, proper transfer is ensured. This delay is insignificant compared to answering calls, making calls, entering numbers, or other human interface functions performed in a cell phone application.

The philosophy of the S²Cwire interface is to perform an operation as quickly as possible to set a given level or option, and then leave it. Refer to Figures 2 and 3 for S²Cwire timing.

In the case of the AS²Cwire interface, where an address accompanies a data burst (if necessary), interrupts may be masked and unmasked to accommodate the time associated with latching the address. For example, interrupts are masked during a 500 μs tLAT timeout. See Figure 4.

Figure 1: S²Cwire Application Circuit
Figure 2: S²Cwire Timing

Figure 3: Interrupt Masking for S²Cwire Data Burst

Figure 4: Interrupt Masking for AS²Cwire Data Burst

Copyright © 2005-2012, 2013 Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. (“Skyworks”) products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks Terms and Conditions of Sale.

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of stated published specifications or parameters.

Skyworks, the Skyworks symbol, and “Breakthrough Simplicity” are trademarks or registered trademarks of Skyworks Solutions, Inc., in the United States and other countries. Third-party brands and names are for identification purposes only, and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.